A coherent quantum annealer with Rydberg atoms

被引:70
|
作者
Glaetzle, A. W. [1 ,2 ,3 ,4 ]
van Bijnen, R. M. W. [1 ,2 ]
Zoller, P. [1 ,2 ]
Lechner, W. [1 ,2 ]
机构
[1] Univ Innsbruck, Inst Theoret Phys, A-6020 Innsbruck, Austria
[2] Austrian Acad Sci, Inst Quantum Opt & Quantum Informat, A-6020 Innsbruck, Austria
[3] Natl Univ Singapore, Ctr Quantum Technol, 3 Sci Dr 2, Singapore 117543, Singapore
[4] Univ Oxford, Clarendon Lab, Parks Rd, Oxford OX1 3PU, England
来源
NATURE COMMUNICATIONS | 2017年 / 8卷
基金
欧洲研究理事会; 奥地利科学基金会; 欧盟地平线“2020”;
关键词
ARRAYS;
D O I
10.1038/ncomms15813
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
There is a significant ongoing effort in realizing quantum annealing with different physical platforms. The challenge is to achieve a fully programmable quantum device featuring coherent adiabatic quantum dynamics. Here we show that combining the well-developed quantum simulation toolbox for Rydberg atoms with the recently proposed Lechner-Hauke-Zoller (LHZ) architecture allows one to build a prototype for a coherent adiabatic quantum computer with all-to-all Ising interactions and, therefore, a platform for quantum annealing. In LHZ an infinite-range spin-glass is mapped onto the low energy subspace of a spin-1/2 lattice gauge model with quasi-local four-body parity constraints. This spin model can be emulated in a natural way with Rubidium and Caesium atoms in a bipartite optical lattice involving laser-dressed Rydberg-Rydberg interactions, which are several orders of magnitude larger than the relevant decoherence rates. This makes the exploration of coherent quantum enhanced optimization protocols accessible with state-of-the-art atomic physics experiments.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] A coherent quantum annealer with Rydberg atoms
    A. W. Glaetzle
    R. M. W. van Bijnen
    P. Zoller
    W. Lechner
    Nature Communications, 8
  • [2] Rydberg atoms and quantum information
    Ryabtsev, I. I.
    Beterov, I. I.
    Tretyakov, D. B.
    Yakshina, E. A.
    Entin, V. M.
    Andreeva, C.
    20TH INTERNATIONAL CONFERENCE AND SCHOOL ON QUANTUM ELECTRONICS: LASER PHYSICS AND APPLICATIONS, 2019, 11047
  • [3] Quantum chaos in Rydberg atoms
    Held, H
    Schlichter, J
    Walther, H
    PERSPECTIVE LOOK AT NONLINEAR MEDIA, 1998, 503 : 1 - 18
  • [4] Quantum information with Rydberg atoms
    Saffman, M.
    Walker, T. G.
    Molmer, K.
    REVIEWS OF MODERN PHYSICS, 2010, 82 (03) : 2313 - 2363
  • [5] Coherent excitation of Rydberg atoms in an ultracold gas
    Deiglmayr, J.
    Reetz-Lamour, M.
    Amthor, T.
    Westermann, S.
    de Oliveira, A. L.
    Weidemueller, M.
    OPTICS COMMUNICATIONS, 2006, 264 (02) : 293 - 298
  • [6] Coherent Electron Emission from Rydberg Atoms
    Robicheaux, F.
    Shaw, J.
    Lankhuijzen, G. M.
    Noordam, L. D.
    Comments on Atomic and Molecular Physics, 33 (06):
  • [7] Digital quantum simulation with Rydberg atoms
    H. Weimer
    M. Müller
    H. P. Büchler
    I. Lesanovsky
    Quantum Information Processing, 2011, 10
  • [8] Collective Quantum Jumps of Rydberg Atoms
    Lee, Tony E.
    Haeffner, H.
    Cross, M. C.
    PHYSICAL REVIEW LETTERS, 2012, 108 (02)
  • [9] Application of Rydberg atoms to quantum computing
    Tretyakov, D. B.
    Beterov, I. I.
    Entin, V. M.
    Ryabtsev, I. I.
    QUANTUM INFORMATICS 2005, 2006, 6264
  • [10] Chiral quantum router with Rydberg atoms
    Palaiodimopoulos, Nikolaos E.
    Ohler, Simon
    Fleischhauer, Michael
    Petrosyan, David
    PHYSICAL REVIEW A, 2024, 109 (03)