Compression Boosts Differentially Private Federated Learning

被引:19
|
作者
Kerkouche, Raouf [1 ]
Acs, Gergely [2 ]
Castelluccia, Claude [1 ]
Geneves, Pierre [3 ]
机构
[1] Univ Grenoble Alpes, INRIA, Privat Team, F-38000 Grenoble, France
[2] BME HIT, Crysys Lab, Budapest, Hungary
[3] Univ Grenoble Alpes, CNRS, INRIA, Grenoble INP,LIG,Tyrex Team, F-38000 Grenoble, France
关键词
Federated Learning; Compressive Sensing; Differential Privacy; Compression; Denoising; Bandwidth Efficiency; Scalability;
D O I
10.1109/EuroSP51992.2021.00029
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Federated Learning allows distributed entities to train a common model collaboratively without sharing their own data. Although it prevents data collection and aggregation by exchanging only parameter updates, it remains vulnerable to various inference and reconstruction attacks where a malicious entity can learn private information about the participants' training data from the captured gradients. Differential Privacy is used to obtain theoretically sound privacy guarantees against such inference attacks by noising the exchanged update vectors. However, the added noise is proportional to the model size which can be very large with modern neural networks. This can result in poor model quality. In this paper, compressive sensing is used to reduce the model size and hence increase model quality without sacrificing privacy. We show experimentally, using 2 datasets, that our privacy-preserving proposal can reduce the communication costs by up to 95% with only a negligible performance penalty compared to traditional non-private federated learning schemes.
引用
收藏
页码:304 / 318
页数:15
相关论文
共 50 条
  • [31] Differentially private federated learning with non-IID data
    Cheng, Shuyan
    Li, Peng
    Wang, Ruchuan
    Xu, He
    COMPUTING, 2024, 106 (07) : 2459 - 2488
  • [32] Differentially Private Federated Learning for Anomaly Detection in eHealth Networks
    Cholakoska, Ana
    Pfitzner, Bjarne
    Gjoreski, Hristijan
    Rakovic, Valentin
    Arnrich, Bert
    Kalendar, Marija
    UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2021, : 514 - 518
  • [33] Generalized genomic data sharing for differentially private federated learning
    Al Aziz, Md Momin
    Anjum, Md Monowar
    Mohammed, Noman
    Jiang, Xiaoqian
    JOURNAL OF BIOMEDICAL INFORMATICS, 2022, 132
  • [34] Differentially Private Federated Learning: An Information-Theoretic Perspective
    Asoodeh, Shahab
    Chen, Wei-Ning
    Calmon, Flavio P.
    Ozgur, Ayfer
    2021 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2021, : 344 - 349
  • [35] FedRecovery: Differentially Private Machine Unlearning for Federated Learning Frameworks
    Zhang, Lefeng
    Zhu, Tianqing
    Zhang, Haibin
    Xiong, Ping
    Zhou, Wanlei
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 4732 - 4746
  • [36] Incentivizing Differentially Private Federated Learning: A Multidimensional Contract Approach
    Wu, Maoqiang
    Ye, Dongdong
    Ding, Jiahao
    Guo, Yuanxiong
    Yu, Rong
    Pan, Miao
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (13) : 10639 - 10651
  • [37] Differentially Private federated learning to Protect Identity in Stress Recognition
    Guelta, Bouchiba
    Benbakreti, Samir
    Boumediene, Kadda
    PRZEGLAD ELEKTROTECHNICZNY, 2024, 100 (06): : 36 - 41
  • [38] The Fundamental Price of Secure Aggregation in Differentially Private Federated Learning
    Chen, Wei-Ning
    Choquette-Choo, Christopher A.
    Kairouz, Peter
    Suresh, Ananda Theertha
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [39] SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression
    Li, Zhize
    Zhao, Haoyu
    Li, Boyue
    Chi, Yuejie
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [40] Boosting Accuracy of Differentially Private Continuous Data Release for Federated Learning
    Cai, Jianping
    Ye, Qingqing
    Hu, Haibo
    Liu, Ximeng
    Fu, Yanggeng
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 10287 - 10301