TD-Net:unsupervised medical image registration network based on Transformer and CNN

被引:19
|
作者
Song, Lei [1 ,2 ]
Liu, Guixia [1 ,2 ]
Ma, Mingrui [1 ,2 ]
机构
[1] Jilin Univ, Coll Comp Sci & Technol, Changchun 130012, Jilin, Peoples R China
[2] Jilin Univ, Key Lab Symbol Computat & Knowledge Engn, Minist Educ, Changchun 130012, Jilin, Peoples R China
关键词
Deformable image registration; Deep learning; CNN; Transformer;
D O I
10.1007/s10489-022-03472-w
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Medical image registration is a fundamental task in computer-aided medical diagnosis. Recently, researchers have begun to use deep learning methods based on convolutional neural networks (CNN) for registration, and have made remarkable achievements in medical image registration. Although CNN based methods can provide rich local information on registration, their global modeling ability is weak to carry out the long distance information interaction and restrict the registration performance. The Transformer is originally used for sequence-to-sequence prediction. Now it also achieves great results in various visual tasks, due to its strong global modeling capability. Compared with CNN, Transformer can provide rich global information, in contrast, Transformer lacks of local information. To address Transformer lacks local information, we propose a hybrid network which is similar to U-Net to combine Transformer and CNN, to extract global and local information (at each level). Specifically, CNN is first used to obtain the feature maps of the image, and the Transformer is used as encoder to extract global information. Then the results obtained by Transformer encoding are connected to the upsampling process. The upsampling uses CNN to integrate local information and global information. Finally, the resolution is restored to the input image, and obtain the displacement field after several convolution layers. We evaluate our method on brain MRI scans. Experimental results demonstrate that our method improves the accuracy by 1% compared with the state-of-the-art approaches.
引用
收藏
页码:18201 / 18209
页数:9
相关论文
共 50 条
  • [31] TFCNs: A CNN-Transformer Hybrid Network for Medical Image Segmentation
    Li, Zihan
    Li, Dihan
    Xu, Cangbai
    Wang, Weice
    Hong, Qingqi
    Li, Qingde
    Tian, Jie
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 781 - 792
  • [32] A Novel CNN-based Model for Medical Image Registration
    Gao, Hui
    Liang, Mingliang
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (11) : 1125 - 1136
  • [33] HmsU-Net: A hybrid multi-scale U-net based on a CNN and transformer for medical image segmentation
    Fu, Bangkang
    Peng, Yunsong
    He, Junjie
    Tian, Chong
    Sun, Xinhuan
    Wang, Rongpin
    COMPUTERS IN BIOLOGY AND MEDICINE, 2024, 170
  • [34] TCDE-Net: An unsupervised dual-encoder network for 3D brain medical image registration
    Yang, Xin
    Li, Dongxue
    Deng, Liwei
    Huang, Sijuan
    Wang, Jing
    COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2025, 123
  • [35] HTC-Net: A hybrid CNN-transformer framework for medical image segmentation
    Tang, Hui
    Chen, Yuanbin
    Wang, Tao
    Zhou, Yuanbo
    Zhao, Longxuan
    Gao, Qinquan
    Du, Min
    Tan, Tao
    Zhang, Xinlin
    Tong, Tong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 88
  • [36] MRSCFusion: Joint Residual Swin Transformer and Multiscale CNN for Unsupervised Multimodal Medical Image Fusion
    Xie, Xinyu
    Zhang, Xiaozhi
    Ye, Shengcheng
    Xiong, Dongping
    Ouyang, Lijun
    Yang, Bin
    Zhou, Hong
    Wan, Yaping
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72
  • [37] Towards Efficient Sparse Transformer based Medical Image Registration
    Zhao, Haifeng
    He, Quanshuang
    Liu, Deyin
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3098 - 3103
  • [38] Unsupervised deformable image registration network for 3D medical images
    Yingjun Ma
    Dongmei Niu
    Jinshuo Zhang
    Xiuyang Zhao
    Bo Yang
    Caiming Zhang
    Applied Intelligence, 2022, 52 : 766 - 779
  • [39] SFM-Net: Semantic Feature-Based Multi-Stage Network for Unsupervised Image Registration
    Ma, Tai
    Dai, Xinru
    Zhang, Suwei
    Zou, Haidong
    He, Lianghua
    Wen, Ying
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2025, 29 (04) : 2832 - 2844
  • [40] Unsupervised deformable image registration network for 3D medical images
    Ma, Yingjun
    Niu, Dongmei
    Zhang, Jinshuo
    Zhao, Xiuyang
    Yang, Bo
    Zhang, Caiming
    APPLIED INTELLIGENCE, 2022, 52 (01) : 766 - 779