QLP: Deep Q-Learning for Pruning Deep Neural Networks

被引:10
|
作者
Camci, Efe [1 ]
Gupta, Manas [1 ]
Wu, Min [1 ]
Lin, Jie [1 ]
机构
[1] ASTAR, Inst Infocomm Res I2R, Singapore 138632, Singapore
关键词
Training; Neural networks; Indexes; Computer architecture; Deep learning; Biological neural networks; Task analysis; Deep neural network compression; pruning; deep reinforcement learning; MODEL COMPRESSION; SPARSITY;
D O I
10.1109/TCSVT.2022.3167951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel, deep Q-learning based method, QLP, for pruning deep neural networks (DNNs). Given a DNN, our method intelligently determines favorable layer-wise sparsity ratios, which are then implemented via unstructured, magnitude-based, weight pruning. In contrast to previous reinforcement learning (RL) based pruning methods, our method is not forced to prune a DNN within a single, sequential pass from the first layer to the last. It visits each layer multiple times and prunes them little by little at each visit, achieving superior granular pruning. Moreover, our method is not restricted to a subset of actions within the feasible action space. It has the flexibility to execute a whole range of sparsity ratios (0% - 100%) for each layer. This enables aggressive pruning without compromising accuracy. Furthermore, our method does not require a complex state definition; it features a simple, generic definition that is composed of only the index and the density of the layers, which leads to less computational demand while observing the state at each interaction. Lastly, our method utilizes a carefully designed curriculum that enables learning targeted policies for each sparsity regime, which helps to deliver better accuracy, especially at high sparsity levels. We conduct batched performance tests at compelling sparsity levels (up to 98%), present extensive ablation studies to justify our RL-related design choices, and compare our method with the state-of-the-art, including RL-based and other pruning methods. Our method sets the new state-of-the-art results in most of the experiments with ResNet-32 and ResNet-56 over CIFAR-10 dataset as well as ResNet-50 and MobileNet-v1 over ILSVRC2012 (ImageNet) dataset.
引用
收藏
页码:6488 / 6501
页数:14
相关论文
共 50 条
  • [21] Fast Convex Pruning of Deep Neural Networks
    Aghasi, Alireza
    Abdi, Afshin
    Romberg, Justin
    SIAM JOURNAL ON MATHEMATICS OF DATA SCIENCE, 2020, 2 (01): : 158 - 188
  • [22] Deep Q-Learning with Phased Experience Cooperation
    Wang, Hongbo
    Zeng, Fanbing
    Tu, Xuyan
    COMPUTER SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING, CHINESECSCW 2019, 2019, 1042 : 752 - 765
  • [23] An Online Home Energy Management System using Q-Learning and Deep Q-Learning
    Izmitligil, Hasan
    Karamancioglu, Abdurrahman
    SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2024, 43
  • [24] Deep Q-learning: A robust control approach
    Varga, Balazs
    Kulcsar, Balazs
    Chehreghani, Morteza Haghir
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2023, 33 (01) : 526 - 544
  • [25] Stochastic Variance Reduction for Deep Q-learning
    Zhao, Wei-Ye
    Peng, Jian
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 2318 - 2320
  • [26] Deep Surrogate Q-Learning for Autonomous Driving
    Kalweit, Maria
    Kalweit, Gabriel
    Werling, Moritz
    Boedecker, Joschka
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 1578 - 1584
  • [27] Trading ETFs with Deep Q-Learning Algorithm
    Hong, Shao-Yan
    Liu, Chien-Hung
    Chen, Woei-Kae
    You, Shingchern D.
    2020 IEEE INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS - TAIWAN (ICCE-TAIWAN), 2020,
  • [28] Diagnosing Bottlenecks in Deep Q-learning Algorithms
    Fu, Justin
    Kumar, Aviral
    Soh, Matthew
    Levine, Sergey
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [29] Deep Q-Learning for Aggregator Price Design
    Pigott, Aisling
    Baker, Kyri
    Mosiman, Cory
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [30] NeuroHex: A Deep Q-learning Hex Agent
    Young, Kenny
    Vasan, Gautham
    Hayward, Ryan
    COMPUTER GAMES: 5TH WORKSHOP ON COMPUTER GAMES, CGW 2016, AND 5TH WORKSHOP ON GENERAL INTELLIGENCE IN GAME-PLAYING AGENTS, GIGA 2016, HELD IN CONJUNCTION WITH THE 25TH INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2016, NEW YORK, USA, JULY 9-10, 2016, 2017, 705 : 3 - 18