QLP: Deep Q-Learning for Pruning Deep Neural Networks

被引:10
|
作者
Camci, Efe [1 ]
Gupta, Manas [1 ]
Wu, Min [1 ]
Lin, Jie [1 ]
机构
[1] ASTAR, Inst Infocomm Res I2R, Singapore 138632, Singapore
关键词
Training; Neural networks; Indexes; Computer architecture; Deep learning; Biological neural networks; Task analysis; Deep neural network compression; pruning; deep reinforcement learning; MODEL COMPRESSION; SPARSITY;
D O I
10.1109/TCSVT.2022.3167951
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present a novel, deep Q-learning based method, QLP, for pruning deep neural networks (DNNs). Given a DNN, our method intelligently determines favorable layer-wise sparsity ratios, which are then implemented via unstructured, magnitude-based, weight pruning. In contrast to previous reinforcement learning (RL) based pruning methods, our method is not forced to prune a DNN within a single, sequential pass from the first layer to the last. It visits each layer multiple times and prunes them little by little at each visit, achieving superior granular pruning. Moreover, our method is not restricted to a subset of actions within the feasible action space. It has the flexibility to execute a whole range of sparsity ratios (0% - 100%) for each layer. This enables aggressive pruning without compromising accuracy. Furthermore, our method does not require a complex state definition; it features a simple, generic definition that is composed of only the index and the density of the layers, which leads to less computational demand while observing the state at each interaction. Lastly, our method utilizes a carefully designed curriculum that enables learning targeted policies for each sparsity regime, which helps to deliver better accuracy, especially at high sparsity levels. We conduct batched performance tests at compelling sparsity levels (up to 98%), present extensive ablation studies to justify our RL-related design choices, and compare our method with the state-of-the-art, including RL-based and other pruning methods. Our method sets the new state-of-the-art results in most of the experiments with ResNet-32 and ResNet-56 over CIFAR-10 dataset as well as ResNet-50 and MobileNet-v1 over ILSVRC2012 (ImageNet) dataset.
引用
收藏
页码:6488 / 6501
页数:14
相关论文
共 50 条
  • [1] Deep Reinforcement Learning: From Q-Learning to Deep Q-Learning
    Tan, Fuxiao
    Yan, Pengfei
    Guan, Xinping
    NEURAL INFORMATION PROCESSING (ICONIP 2017), PT IV, 2017, 10637 : 475 - 483
  • [2] DEEP LEARNING BASED METHOD FOR PRUNING DEEP NEURAL NETWORKS
    Li, Lianqiang
    Zhu, Jie
    Sun, Ming-Ting
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2019, : 312 - 317
  • [3] Faster Deep Q-learning using Neural Episodic Control
    Nishio, Daichi
    Yamane, Satoshi
    2018 IEEE 42ND ANNUAL COMPUTER SOFTWARE AND APPLICATIONS CONFERENCE (COMPSAC), VOL 1, 2018, : 486 - 491
  • [4] Constrained Deep Q-Learning Gradually Approaching Ordinary Q-Learning
    Ohnishi, Shota
    Uchibe, Eiji
    Yamaguchi, Yotaro
    Nakanishi, Kosuke
    Yasui, Yuji
    Ishii, Shin
    FRONTIERS IN NEUROROBOTICS, 2019, 13
  • [5] Methods for Pruning Deep Neural Networks
    Vadera, Sunil
    Ameen, Salem
    IEEE ACCESS, 2022, 10 : 63280 - 63300
  • [6] Hierarchical clustering with deep Q-learning
    Forster, Richard
    Fulop, Agnes
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2018, 10 (01) : 86 - 109
  • [7] Active deep Q-learning with demonstration
    Si-An Chen
    Voot Tangkaratt
    Hsuan-Tien Lin
    Masashi Sugiyama
    Machine Learning, 2020, 109 : 1699 - 1725
  • [8] Active deep Q-learning with demonstration
    Chen, Si-An
    Tangkaratt, Voot
    Lin, Hsuan-Tien
    Sugiyama, Masashi
    MACHINE LEARNING, 2020, 109 (9-10) : 1699 - 1725
  • [9] A Theoretical Analysis of Deep Q-Learning
    Fan, Jianqing
    Wang, Zhaoran
    Xie, Yuchen
    Yang, Zhuoran
    LEARNING FOR DYNAMICS AND CONTROL, VOL 120, 2020, 120 : 486 - 489
  • [10] Deep Q-Learning from Demonstrations
    Hester, Todd
    Vecerik, Matej
    Pietquin, Olivier
    Lanctot, Marc
    Schaul, Tom
    Piot, Bilal
    Horgan, Dan
    Quan, John
    Sendonaris, Andrew
    Osband, Ian
    Dulac-Arnold, Gabriel
    Agapiou, John
    Leibo, Joel Z.
    Gruslys, Audrunas
    THIRTY-SECOND AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE / THIRTIETH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE / EIGHTH AAAI SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2018, : 3223 - 3230