Inverse source problems in transport equations

被引:42
|
作者
Bal, Guillaume [1 ]
Tamasan, Alexandru [1 ]
机构
[1] Columbia Univ, Dept Appl Phys & Appl Math, New York, NY 10027 USA
关键词
attenuated Radon transform; scattering; optical molecular imaging;
D O I
10.1137/050647177
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper proposes an iterative technique to reconstruct the source term in transport equations, which account for scattering effects, from boundary measurements. In the two-dimensional setting, the full outgoing distribution in the phase space ( position and direction) needs to be measured. In three space dimensions, we show that measurements for angles that are orthogonal to a given direction are sufficient. In both cases, the derivation is based on a perturbation of the inversion of the two-dimensional attenuated Radon transform and requires that (the anisotropic part of) scattering be sufficiently small. We present an explicit iterative procedure, which converges to the source term we want to reconstruct. Applications of the inversion procedure include optical molecular imaging, an increasingly popular medical imaging modality.
引用
收藏
页码:57 / 76
页数:20
相关论文
共 50 条
  • [21] Inverse problems for equations with memory
    Bukhgeim, AL
    Dyatlov, GV
    INVERSE PROBLEMS AND RELATED TOPICS, 2000, 419 : 19 - 35
  • [22] INVERSE PROBLEMS FOR ELECTRODYNAMIC EQUATIONS
    Romanov, V. G.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2011, 8 : C346 - C353
  • [23] INVERSE PROBLEMS FOR EVOLUTION EQUATIONS
    Anikonov, Yu E.
    Abasheeva, N. L.
    Ayupova, N. B.
    Kozhanov, A. I.
    Neshchadim, M. V.
    Valitov, I. R.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2008, 5 : 549 - 580
  • [24] INVERSE PROBLEMS FOR PARABOLIC EQUATIONS
    VU, PL
    MATHEMATISCHE NACHRICHTEN, 1989, 141 : 325 - 334
  • [25] On Inverse Problems for Semiconductor Equations
    M. Burger
    H. W. Engl
    A. Leitao
    P. A. Markowich
    Milan Journal of Mathematics, 2004, 72 (1) : 273 - 313
  • [26] Inverse source problems in elastodynamics
    Bao, Gang
    Hu, Guanghui
    Kian, Yavar
    Yin, Tao
    INVERSE PROBLEMS, 2018, 34 (04)
  • [27] Inverse Source Problems in Thermoelasticity
    Van Bockstal, Karel
    EXTENDED ABSTRACTS MWCAPDE 2023, 2024, 1 : 215 - 224
  • [28] On inverse acoustic source problems
    El Badia, A
    Ha-Duong, T
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 653 - 656
  • [29] INVERSE SOURCE PROBLEMS IN ELECTRODYNAMICS
    Hu, Guanghui
    Li, Peijun
    Liu, Xiaodong
    Zhao, Yue
    INVERSE PROBLEMS AND IMAGING, 2018, 12 (06) : 1411 - 1428
  • [30] Solving Inverse Equivalent Surface Source Problems by the Normal Error System of Normal Equations
    Kornprobst, J.
    Neitz, O.
    Knapp, J.
    Mauermayer, R. A. M.
    Eibert, T. F.
    PROCEEDINGS OF THE 2019 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2019, : 989 - 989