Effect of Laser Remelting on Microstructure and Properties of AlCoCrFeNi High-Entropy Alloy Coating

被引:18
|
作者
Liu, Qi [1 ]
Dong, Tian-shun [1 ,2 ]
Fu, Bin-guo [1 ]
Li, Guo-lu [1 ]
Yang, Li-jun [3 ]
机构
[1] Hebei Univ Technol, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
[2] Hebei Wear Resistant Met Casting Technol Innovat, Chengde 067000, Hebei, Peoples R China
[3] Tianjin Univ, Sch Mat Sci & Engn, Tianjin 300130, Peoples R China
基金
中国国家自然科学基金;
关键词
high-entropy alloy coating; laser remelting; mechanical properties; plasma spraying; wear resistance; CORROSION PROPERTY; WEAR; BEHAVIOR; PERFORMANCE; EVOLUTION; SUBSTRATE; X=0;
D O I
10.1007/s11665-021-05806-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A high-entropy alloy coating of AlCoCrFeNi was prepared by plasma spraying and then remelted via laser remelting. The effect of laser remelting on the microstructure, mechanical properties and wear resistance of the AlCoCrFeNi coating was investigated. Particularly, the effect of surface free energy on the wear resistance of the coatings before and after remelting was explored. The results showed that the remelted AlCoCrFeNi coating retained the same single BCC solid solution structure as the as-sprayed AlCoCrFeNi coating. Besides, the defects in the coating were basically eliminated by laser remelting, leading to the porosity of the coating decreased from 4.8 to only 0.3%. Consequently, the hardness, elastic modulus and fracture toughness of the coating were enhanced by 38%, and the wear loss of the remelted AlCoCrFeNi coating was only 22% of that of the as-sprayed one. Therefore, laser remelting is a feasible method to improve the microstructure and enhance the wear resistance of the AlCoCrFeNi high-entropy alloy coating.
引用
收藏
页码:5728 / 5735
页数:8
相关论文
共 50 条
  • [21] Effect of silicon and aluminum on microstructure and properties of laser cladding MoFeCrTiW high-entropy alloy coating
    Zhou, Fang
    Liu, Qibin
    Zheng, Bo
    Qiangjiguang Yu Lizishu/High Power Laser and Particle Beams, 2015, 27 (11):
  • [22] Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding
    Hao Liu
    Wenpeng Gao
    Jian Liu
    Xiaotong Du
    Xiaojia Li
    Haifeng Yang
    Journal of Materials Engineering and Performance, 2020, 29 : 7170 - 7178
  • [23] Microstructure and Properties of CoCrFeNiTi High-Entropy Alloy Coating Fabricated by Laser Cladding
    Liu, Hao
    Gao, Wenpeng
    Liu, Jian
    Du, Xiaotong
    Li, Xiaojia
    Yang, Haifeng
    JOURNAL OF MATERIALS ENGINEERING AND PERFORMANCE, 2020, 29 (11) : 7170 - 7178
  • [24] Microstructure and Friction Properties of CoCrFeMnNiTix High-Entropy Alloy Coating by Laser Cladding
    Liu, Pengfei
    Si, Wudong
    Zhang, Dabin
    Dai, Sichao
    Jiang, Benchi
    Shu, Da
    Wu, Lulu
    Zhang, Chao
    Zhang, Meisong
    MATERIALS, 2022, 15 (13)
  • [26] Microstructure and properties of FeCoNiCrAl high-entropy alloy coating by directed laser deposition
    Di, TengDa
    Liang, XinYi
    Niu, FangYong
    Song, ChenChen
    Shu, DanLin
    Hao, YuanChen
    Ma, GuangYi
    Wu, DongJiang
    10TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES: ADVANCED AND EXTREME MICRO-NANO MANUFACTURING TECHNOLOGIES, 2021, 12073
  • [27] Microstructure and Properties of FeCrNiCoMnx, High-Entropy Alloy Coating Prepared by Laser Cladding
    Zhang Chong
    Wu Bingqian
    Wang Qianting
    Chen Dingning
    Dai Pinqiang
    RARE METAL MATERIALS AND ENGINEERING, 2017, 46 (09) : 2639 - 2644
  • [28] Effect of laser remelting on the microstructure and properties of the aluminum high silicon alloy coating
    Yang, Guowei
    Fu, Binguo
    Dong, Tianshun
    Li, Guolu
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2024, 324
  • [29] Effect of synergistic variation in Ti and Zr elements on the microstructure and properties of laser cladding AlCoCrFeNi high-entropy alloy coatings
    Ma, Qi
    Zhao, Wei
    Shi, Chuanwei
    Wang, Ming
    Song, Chenxiao
    Zhang, Hui
    Gao, Song
    MATERIALS CHARACTERIZATION, 2023, 205
  • [30] Effect of Nb and Ti additions on microstructure, hardness and wear properties of AlCoCrFeNi high-entropy alloy
    Dalan, Filipe Caldatto (caldatto.filipe@gmail.com), 1600, Elsevier Ltd (1010):