Non-ideal behavior in organic field effect transistors, in particular threshold voltage drift and light sensitivity, is argued to be due to intrinsic carrier dynamics. The discussion is based on the theory for hopping transport within a Gaussian density of states. Carrier concentration is shown to be of fundamental importance, and the time required to reach equilibrium at different bias is responsible for device behavior, with implications for mobility evaluation. Experimental results from various conjugated polymers in a field effect transistor illustrate the theory. (c) 2007 Elsevier B.V. All rights reserved.