Improvements on the infinity norm bound for the inverse of Nekrasov matrices

被引:15
|
作者
Li, Chaoqian [1 ]
Pei, Hui [1 ]
Gao, Aning [1 ]
Li, Yaotang [1 ]
机构
[1] Yunnan Univ, Sch Math & Stat, Yunnan, Peoples R China
关键词
Infinity norm; Nekrasov matrices; H-matrices;
D O I
10.1007/s11075-015-0012-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
New bounds for the infinity norm of the inverse of Nekrasov matrices, which involve a parameter, are given. And then we determine the optimal value of the parameter such that the new bounds are better than those in Cvetkovic et al. (Appl. Math. Comput. 219, 5020-5024, 2013). Numerical examples are given to illustrate the corresponding results.
引用
收藏
页码:613 / 630
页数:18
相关论文
共 50 条
  • [21] Schur Complement-Based Infinity Norm Bounds for the Inverse of SDD Matrices
    Li, Chaoqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2020, 43 (05) : 3829 - 3845
  • [22] Bounds for the infinity norm of the inverse for certain M- and H-matrices
    Kolotilina, L. Yu.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (2-3) : 692 - 702
  • [23] Upper bounds for the infinity norm of the inverse of SDD and S-SDD matrices
    Moraca, Nenad
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 206 (02) : 666 - 678
  • [24] Infinity Norm Bounds for the Inverse of SDD1-Type Matrices with Applications
    Geng, Yuanjie
    Zhu, Yuxue
    Zhang, Fude
    Wang, Feng
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2025,
  • [25] Schur Complement-Based Infinity Norm Bounds for the Inverse of DSDD Matrices
    Caili Sang
    Bulletin of the Iranian Mathematical Society, 2021, 47 : 1379 - 1398
  • [26] Schur Complement-Based Infinity Norm Bounds for the Inverse of GDSDD Matrices
    Li, Yating
    Wang, Yaqiang
    MATHEMATICS, 2022, 10 (02)
  • [27] Infinity norm bounds for the inverse of generalized SDD2 matrices with applications
    Li, Qin
    Ran, Wenwen
    Wang, Feng
    JAPAN JOURNAL OF INDUSTRIAL AND APPLIED MATHEMATICS, 2024, 41 (03) : 1477 - 1500
  • [28] Infinity norm bounds for the inverse of S DD+1 matrices with applications
    Liu, Lanlan
    Zhu, Yuxue
    Wang, Feng
    Geng, Yuanjie
    AIMS MATHEMATICS, 2024, 9 (08): : 21294 - 21320
  • [29] Spectral radius and infinity norm of matrices
    Zheng, Baodong
    Wang, Liancheng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 346 (01) : 243 - 250
  • [30] Infinity norm bounds for the inverse of Quasi-SDDk SDD k matrices with applications
    Li, Qin
    Ran, Wenwen
    Wang, Feng
    NUMERICAL ALGORITHMS, 2024,