Gorenstein Graphic Matroids

被引:3
|
作者
Hibi, Takayuki [1 ]
Lason, Michal [2 ]
Matsuda, Kazunori [3 ]
Michalek, Mateusz [2 ,4 ,5 ]
Vodicka, Martin [4 ]
机构
[1] Osaka Univ, Grad Sch Informat Sci & Technol, Dept Pure & Appl Math, Suita, Osaka 5650871, Japan
[2] Polish Acad Sci, Inst Math, PL-00656 Warsaw, Poland
[3] Kitami Inst Technol, Kitami, Hokkaido 0908507, Japan
[4] Max Planck Inst, Math Sci, Inselstr 22, D-04103 Leipzig, Germany
[5] Aalto Univ, Espoo, Finland
关键词
EHRHART POLYNOMIALS; H-VECTORS; POLYTOPES;
D O I
10.1007/s11856-021-2136-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The toric variety of a matroid is projectively normal, and therefore it is Cohen-Macaulay. We provide a complete graph-theoretic classification when the toric variety of a graphic matroid is Gorenstein.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
  • [1] Gorenstein graphic matroids
    Takayuki Hibi
    Michał Lasoń
    Kazunori Matsuda
    Mateusz Michałek
    Martin Vodička
    Israel Journal of Mathematics, 2021, 243 : 1 - 26
  • [2] Gorenstein Graphic Matroids from Multigraphs
    Koelbl, Max
    ANNALS OF COMBINATORICS, 2020, 24 (02) : 395 - 403
  • [3] Gorenstein Graphic Matroids from Multigraphs
    Max Kölbl
    Annals of Combinatorics, 2020, 24 : 395 - 403
  • [4] Gorenstein Matroids
    Lason, Michal
    Michalek, Mateusz
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (18) : 15687 - 15728
  • [5] On graphic elementary lifts of graphic matroids
    Mundhe, Ganesh
    Borse, Y. M.
    Dalvi, K. V.
    DISCRETE MATHEMATICS, 2022, 345 (10)
  • [6] Infinite Graphic Matroids
    Nathan Bowler
    Johannes Carmesin
    Robin Christian
    Combinatorica, 2018, 38 : 305 - 339
  • [7] On Extension of Graphic Matroids
    Azanchiler, H.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (01) : 38 - 47
  • [8] RECOGNIZING GRAPHIC MATROIDS
    SEYMOUR, PD
    COMBINATORICA, 1981, 1 (01) : 75 - 78
  • [9] Infinite Graphic Matroids
    Bowler, Nathan
    Carmesin, Johannes
    Christian, Robin
    COMBINATORICA, 2018, 38 (02) : 305 - 339
  • [10] On cographic matroids and signed-graphic matroids
    Slilaty, DC
    DISCRETE MATHEMATICS, 2005, 301 (2-3) : 207 - 217