Gorenstein Graphic Matroids from Multigraphs

被引:4
|
作者
Koelbl, Max [1 ]
机构
[1] Univ Leipzig, Leipzig, Germany
关键词
D O I
10.1007/s00026-020-00495-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A matroid is Gorenstein if its toric variety is. Hibi, Lason, Matsuda, Michalek, and Vodicka provided a full graph-theoretic classification of Gorenstein matroids associated to simple graphs. We extend this classification to multigraphs.
引用
收藏
页码:395 / 403
页数:9
相关论文
共 50 条
  • [1] Gorenstein Graphic Matroids from Multigraphs
    Max Kölbl
    [J]. Annals of Combinatorics, 2020, 24 : 395 - 403
  • [2] Gorenstein graphic matroids
    Takayuki Hibi
    Michał Lasoń
    Kazunori Matsuda
    Mateusz Michałek
    Martin Vodička
    [J]. Israel Journal of Mathematics, 2021, 243 : 1 - 26
  • [3] Gorenstein Graphic Matroids
    Hibi, Takayuki
    Lason, Michal
    Matsuda, Kazunori
    Michalek, Mateusz
    Vodicka, Martin
    [J]. ISRAEL JOURNAL OF MATHEMATICS, 2021, 243 (01) : 1 - 26
  • [4] Gorenstein Matroids
    Lason, Michal
    Michalek, Mateusz
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (18) : 15687 - 15728
  • [5] On graphic elementary lifts of graphic matroids
    Mundhe, Ganesh
    Borse, Y. M.
    Dalvi, K. V.
    [J]. DISCRETE MATHEMATICS, 2022, 345 (10)
  • [6] Infinite Graphic Matroids
    Nathan Bowler
    Johannes Carmesin
    Robin Christian
    [J]. Combinatorica, 2018, 38 : 305 - 339
  • [7] On Extension of Graphic Matroids
    Azanchiler, H.
    [J]. LOBACHEVSKII JOURNAL OF MATHEMATICS, 2015, 36 (01) : 38 - 47
  • [8] RECOGNIZING GRAPHIC MATROIDS
    SEYMOUR, PD
    [J]. COMBINATORICA, 1981, 1 (01) : 75 - 78
  • [9] Infinite Graphic Matroids
    Bowler, Nathan
    Carmesin, Johannes
    Christian, Robin
    [J]. COMBINATORICA, 2018, 38 (02) : 305 - 339
  • [10] On cographic matroids and signed-graphic matroids
    Slilaty, DC
    [J]. DISCRETE MATHEMATICS, 2005, 301 (2-3) : 207 - 217