The kth lower multiexponent of tournament matrices

被引:0
|
作者
Liu, BL [1 ]
Yan, W [1 ]
机构
[1] S China Normal Univ, Dept Math, Guangzhou, Peoples R China
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we investigate the kth lower multiexponent f(n, k) for tournament matrices. It was proved that f(n, 3) = 2 if and only if n greater than or equal to 11. Thus the conjecture in [2] is disproved. Further we obtain a new sufficient condition for f(n, k) = 1.
引用
收藏
页码:257 / 262
页数:6
相关论文
共 50 条
  • [1] On a conjecture about the kth lower multiexponent
    Huang, Yufei
    Liu, Bolian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (01) : 36 - 44
  • [2] A conjecture about lower multiexponent of primitive matrices
    Liu, Bolian
    Huang, Fengying
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (08) : 2100 - 2106
  • [3] ON TOURNAMENT MATRICES
    SHADER, BL
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1992, 162 : 335 - 368
  • [4] THE RANKS OF TOURNAMENT MATRICES
    DECAEN, D
    AMERICAN MATHEMATICAL MONTHLY, 1991, 98 (09): : 829 - 831
  • [5] ON GENERALIZED TOURNAMENT MATRICES
    MOON, JW
    PULLMAN, NJ
    SIAM REVIEW, 1970, 12 (03) : 384 - &
  • [6] THE RANKS OF TOURNAMENT MATRICES
    MICHAEL, TS
    AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (07): : 637 - 639
  • [7] Multiexponents of tournament matrices
    Liu, BL
    ARS COMBINATORIA, 1995, 41 : 269 - 277
  • [8] On the Involutive Matrices of the kth Degree
    Keleş H.
    Iraqi Journal for Computer Science and Mathematics, 2023, 4 (01): : 10 - 14
  • [9] Determinants of Seidel tournament matrices
    Klanderman, Sarah
    Montee, Murphykate
    Piotrowski, Andrzej
    Rice, Alex
    Shader, Bryan
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2025, 707 : 126 - 151
  • [10] GENERALIZED EXPONENTS OF TOURNAMENT MATRICES
    LIU, BL
    ARS COMBINATORIA, 1994, 38 : 243 - 250