Feasible edge colorings of trees with cardinality constraints

被引:8
|
作者
de Werra, D
Hertz, A [1 ]
Kobler, D
Mahadev, NVR
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
[2] Northeastern Univ, Boston, MA 02115 USA
关键词
edge coloring; open shop; cost; timetabling; feasible colors; cardinality constraints;
D O I
10.1016/S0012-365X(00)00006-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A variation of preemptive open shop scheduling corresponds to finding a feasible edge coloring in a bipartite multigraph with some requirements on the size of the different color classes, We show that for trees with fixed maximum degree, one can find in polynomial time an edge k-coloring where for i = 1,,..,k the number of edges of color i is exactly a given number h(i), and each edge e gets its color from a set phi(e) of feasible colors, if such a coloring exists. This problem is NP-complete for general bipartite multigraphs. Applications to open shop problems with costs for using colors are described. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [41] Resizing cardinality constraints for MaxSAT
    Jahren, Eivind
    Acha, Roberto Asin
    AI COMMUNICATIONS, 2018, 31 (04) : 355 - 367
  • [42] The complexity of global cardinality constraints
    Bulatov, Andrei A.
    Marx, Daniel
    24TH ANNUAL IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE, PROCEEDINGS, 2009, : 419 - +
  • [43] THE COMPLEXITY OF GLOBAL CARDINALITY CONSTRAINTS
    Bulatov, Andrei A.
    Marx, Daniel
    LOGICAL METHODS IN COMPUTER SCIENCE, 2010, 6 (04) : 1 - 27
  • [44] EVALUATION OF COMPLEX CARDINALITY CONSTRAINTS
    ZHOU, J
    BAUMANN, P
    LECTURE NOTES IN COMPUTER SCIENCE, 1992, 645 : 24 - 40
  • [45] Degenerate matchings and edge colorings
    Baste, Julien
    Rautenbach, Dieter
    DISCRETE APPLIED MATHEMATICS, 2018, 239 : 38 - 44
  • [46] EDGE COLORINGS AVOIDING PATTERNS
    Debski, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2019, 88 (03): : 619 - 623
  • [47] Acyclic edge colorings of graphs
    Alon, N
    Sudakov, B
    Zaks, A
    JOURNAL OF GRAPH THEORY, 2001, 37 (03) : 157 - 167
  • [48] EVEN EDGE COLORINGS OF A GRAPH
    ACHARYA, BD
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 1983, 35 (01) : 78 - 79
  • [49] Edge Colorings of Embedded Graphs
    Zhongde Yan
    Yue Zhao
    Graphs and Combinatorics, 2000, 16 : 245 - 256
  • [50] ON TWIN EDGE COLORINGS OF GRAPHS
    Andrews, Eric
    Helenius, Laars
    Johnston, Daniel
    VerWys, Jonathon
    Zhang, Ping
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2014, 34 (03) : 613 - 627