Feasible edge colorings of trees with cardinality constraints

被引:8
|
作者
de Werra, D
Hertz, A [1 ]
Kobler, D
Mahadev, NVR
机构
[1] Ecole Polytech Fed Lausanne, Dept Math, CH-1015 Lausanne, Switzerland
[2] Northeastern Univ, Boston, MA 02115 USA
关键词
edge coloring; open shop; cost; timetabling; feasible colors; cardinality constraints;
D O I
10.1016/S0012-365X(00)00006-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A variation of preemptive open shop scheduling corresponds to finding a feasible edge coloring in a bipartite multigraph with some requirements on the size of the different color classes, We show that for trees with fixed maximum degree, one can find in polynomial time an edge k-coloring where for i = 1,,..,k the number of edges of color i is exactly a given number h(i), and each edge e gets its color from a set phi(e) of feasible colors, if such a coloring exists. This problem is NP-complete for general bipartite multigraphs. Applications to open shop problems with costs for using colors are described. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:61 / 72
页数:12
相关论文
共 50 条
  • [1] A note on edge colorings and trees
    Jarden, Adi
    Shami, Ziv
    MATHEMATICAL LOGIC QUARTERLY, 2022, 68 (04) : 447 - 457
  • [2] Nonrepetitive edge-colorings of trees
    Kuendgen, Andre
    Talbot, Tonya
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2017, 19 (01):
  • [3] ON EQUITABLE VERTEX DISTINGUISHING EDGE COLORINGS OF TREES
    Yao, Bing
    Chen, Xiang'en
    Shan, Songling
    ACTA MATHEMATICA SCIENTIA, 2013, 33 (03) : 621 - 630
  • [4] The Glauber dynamics for edge-colorings of trees
    Delcourt, Michelle
    Heinrich, Marc
    Perarnau, Guillem
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (04) : 1050 - 1076
  • [5] ON EQUITABLE VERTEX DISTINGUISHING EDGE COLORINGS OF TREES
    姚兵
    陈祥恩
    镡松龄
    Acta Mathematica Scientia, 2013, 33 (03) : 621 - 630
  • [6] On twin edge colorings in m-ary trees
    Tolentino, Jayson
    Marcelo, Reginaldo
    Tolentino, Mark Anthony
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2022, 10 (01) : 131 - 149
  • [7] Edge-colorings of complete graphs that avoid polychromatic trees
    Jiang, T
    West, DB
    DISCRETE MATHEMATICS, 2004, 274 (1-3) : 137 - 145
  • [8] FEASIBLE GRAPHS AND COLORINGS
    CENZER, D
    REMMEL, J
    MATHEMATICAL LOGIC QUARTERLY, 1995, 41 (03) : 327 - 352
  • [9] Minimum Cost Edge-Colorings of Trees Can Be Reduced to Matchings
    Ito, Takehiro
    Sakamoto, Naoki
    Zhou, Xiao
    Nishizeki, Takao
    FRONTIERS IN ALGORITHMICS, 2010, 6213 : 274 - +
  • [10] Minimum cost edge-colorings of trees can be reduced to matchings
    Graduate School of Information Sciences, Tohoku University, Aoba-yama 6-6-05, Sendai 980-8579, Japan
    不详
    Lect. Notes Comput. Sci., 1600, (274-284):