INVARIANCE PRINCIPLES FOR SELF-SIMILAR SET-INDEXED RANDOM FIELDS

被引:16
|
作者
Bierme, Hermine [1 ,2 ]
Durieu, Olivier [2 ]
机构
[1] Univ Paris 05, CNRS, UMR 8145, MAP5,PRES Sorbonne Paris Cite, F-75006 Paris, France
[2] Univ Tours, CNRS, UMR 7350, Lab Math & Phys Theor,Federat Denis Poisson FR 29, F-37200 Tours, France
关键词
Dependent random field; invariance principle; set-indexed process; Levy fractional Brownian field; Chentsov's type representation; physical dependence measure; Vapnik-Chervonenkis dimension; CENTRAL-LIMIT-THEOREM; MIXING RANDOM-FIELDS; BROWNIAN-MOTION; REPRESENTATION; VARIANCE;
D O I
10.1090/S0002-9947-2014-06135-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a stationary random field (X-j)(j is an element of Z)(d) and some measure mu on R-d, we consider the set-indexed weighted sum process S-n(A) = Sigma(j subset of Zd) mu(nA boolean AND R-j)(1/2) X-j, where R-j is the unit cube with lower corner j. We establish a general invariance principle under a p-stability assumption on the X-j's and an entropy condition on the class of sets A. The limit processes are self-similar set-indexed Gaussian processes with continuous sample paths. Using Chentsov's type representations to choose appropriate measures mu and particular sets A, we show that these limits can be Levy (fractional) Brownian fields or (fractional) Brownian sheets.
引用
收藏
页码:5963 / 5989
页数:27
相关论文
共 50 条