INVARIANCE PRINCIPLES FOR SELF-SIMILAR SET-INDEXED RANDOM FIELDS

被引:16
|
作者
Bierme, Hermine [1 ,2 ]
Durieu, Olivier [2 ]
机构
[1] Univ Paris 05, CNRS, UMR 8145, MAP5,PRES Sorbonne Paris Cite, F-75006 Paris, France
[2] Univ Tours, CNRS, UMR 7350, Lab Math & Phys Theor,Federat Denis Poisson FR 29, F-37200 Tours, France
关键词
Dependent random field; invariance principle; set-indexed process; Levy fractional Brownian field; Chentsov's type representation; physical dependence measure; Vapnik-Chervonenkis dimension; CENTRAL-LIMIT-THEOREM; MIXING RANDOM-FIELDS; BROWNIAN-MOTION; REPRESENTATION; VARIANCE;
D O I
10.1090/S0002-9947-2014-06135-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a stationary random field (X-j)(j is an element of Z)(d) and some measure mu on R-d, we consider the set-indexed weighted sum process S-n(A) = Sigma(j subset of Zd) mu(nA boolean AND R-j)(1/2) X-j, where R-j is the unit cube with lower corner j. We establish a general invariance principle under a p-stability assumption on the X-j's and an entropy condition on the class of sets A. The limit processes are self-similar set-indexed Gaussian processes with continuous sample paths. Using Chentsov's type representations to choose appropriate measures mu and particular sets A, we show that these limits can be Levy (fractional) Brownian fields or (fractional) Brownian sheets.
引用
收藏
页码:5963 / 5989
页数:27
相关论文
共 50 条
  • [1] On locally self-similar fractional random fields indexed by a manifold
    Istas, Jacques
    Lacaux, Celine
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC PROCESSES, 2013, 85 (03) : 489 - 499
  • [2] Random censoring in set-indexed survival analysis
    Ivanoff, BG
    Merzbach, E
    ANNALS OF APPLIED PROBABILITY, 2002, 12 (03): : 944 - 971
  • [3] VARIANCE OF SET-INDEXED SUMS OF MIXING RANDOM-VARIABLES AND WEAK-CONVERGENCE OF SET-INDEXED PROCESSES
    GOLDIE, CM
    GREENWOOD, PE
    ANNALS OF PROBABILITY, 1986, 14 (03): : 817 - 839
  • [4] Subordinated Random Fields: Construction of Self-similar Fields
    Major, Peter
    MULTIPLE WIENER-ITO INTEGRALS: WITH APPLICATIONS TO LIMIT THEOREMS, 2ND EDITION, 2014, 849 : 65 - 79
  • [5] Self-similar random fields and rainfall simulation
    Menabde, M
    Seed, A
    Harris, D
    Austin, G
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1997, 102 (D12) : 13509 - 13515
  • [6] Exponents of operator self-similar random fields
    Didier, Gustavo
    Meerschaert, Mark M.
    Pipiras, Vladas
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 448 (02) : 1450 - 1466
  • [7] Self-similar Random Fields and Rescaled Random Balls Models
    Bierme, Hermine
    Estrade, Anne
    Kaj, Ingemar
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (04) : 1110 - 1141
  • [8] Self-similar Random Fields and Rescaled Random Balls Models
    Hermine Biermé
    Anne Estrade
    Ingemar Kaj
    Journal of Theoretical Probability, 2010, 23 : 1110 - 1141
  • [9] Sufficient condition for a topological self-similar set to be a self-similar set
    Ni, Tianjia
    Wen, Zhiying
    TOPOLOGY AND ITS APPLICATIONS, 2024, 358
  • [10] GAUSSIAN AND THEIR SUBORDINATED SELF-SIMILAR RANDOM GENERALIZED FIELDS
    DOBRUSHIN, RL
    ANNALS OF PROBABILITY, 1979, 7 (01): : 1 - 28