Some models of Cahn-Hilliard equations in nonisotropic media.

被引:3
|
作者
Miranville, A [1 ]
机构
[1] Univ Poitiers, F-86962 Futuroscope, France
关键词
Cahn-Hilliard equation; internal microforces; deformable continuum; nonisotropic material; global attractor; exponential attractor;
D O I
10.1051/m2an:2000155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive in this article some models of Cahn-Hilliard equations in nonisotropic media. These models, based on constitutive equations introduced by Gurtin in [19], take the work of internal microforces and also the deformations of the material into account. We then study the existence and uniqueness of solutions and obtain the existence of finite dimensional attractors. Mathematics Subject Classification. 35A05, 35B40, 35B45.
引用
收藏
页码:539 / 554
页数:16
相关论文
共 50 条
  • [41] Symmetry analysis and solutions for a family of Cahn-Hilliard equations
    Gandarias, ML
    Bruzón, MS
    REPORTS ON MATHEMATICAL PHYSICS, 2000, 46 (1-2) : 89 - 97
  • [42] A new time integration scheme for Cahn-Hilliard equations
    Schaefer, R.
    Smolka, M.
    Dalcin, L.
    Paszynski, M.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 1003 - 1012
  • [43] CONVECTIVE NONLOCAL CAHN-HILLIARD EQUATIONS WITH REACTION TERMS
    Della Porta, Francesco
    Grasselli, Maurizio
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (05): : 1529 - 1553
  • [45] Numerical methods for a system of coupled Cahn-Hilliard equations
    Martini, Mattia
    Sodini, Giacomo E.
    COMMUNICATIONS IN APPLIED AND INDUSTRIAL MATHEMATICS, 2021, 12 (01) : 1 - 12
  • [46] Spinodal decomposition for spatially discrete Cahn-Hilliard equations
    Maier-Paape, S
    Moore, BE
    Van Vleck, ES
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES A-MATHEMATICAL ANALYSIS, 2005, 12 (3-4): : 529 - 554
  • [47] Comparison of solvers for two formulations of Cahn-Hilliard equations
    Paszynski, Maciej
    Gurgul, Grzegorz
    Cortes, Adriano
    Szeliga, Danuta
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON METAL FORMING METAL FORMING 2018, 2018, 15 : 1900 - 1907
  • [48] The Cahn-Hilliard type equations with periodic potentials and sources
    Yin, Jingxue
    Li, Yinghua
    Huang, Rui
    APPLIED MATHEMATICS AND COMPUTATION, 2009, 211 (01) : 211 - 221
  • [49] REGULARIZATION AND SEPARATION FOR EVOLVING SURFACE CAHN-HILLIARD EQUATIONS
    Caetano, Diogo
    Elliott, Charles m.
    Grasselli, Maurizio
    Poiatti, Andrea
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2023, 55 (06) : 6625 - 6675
  • [50] ON THE CAHN-HILLIARD EQUATION
    ELLIOTT, CM
    ZHENG, SM
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1986, 96 (04) : 339 - 357