Reversible hydrogen storage of multi-wall carbon nanotubes doped with atomically dispersed lithium

被引:32
|
作者
Wang, Yi [1 ]
Li, An [2 ]
Wang, Kean [1 ]
Guan, Cong [1 ]
Deng, Weiqiao [3 ]
Li, Changming [1 ]
Wang, Xin [1 ]
机构
[1] Nanyang Technol Univ, Sch Chem & Biomed Engn, Singapore 639798, Singapore
[2] Nanyang Technol Univ, Sch Phys & Math Sci, Singapore 639798, Singapore
[3] Chinese Acad Sci, Dalian Inst Chem Phys, Dalian 116023, Peoples R China
基金
新加坡国家研究基金会;
关键词
METAL-ORGANIC FRAMEWORKS; ADSORPTION; INTERCALATION; PRESSURE; CLUSTERS; ALLOYS;
D O I
10.1039/c0jm00609b
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The doping of dispersed lithium (Li) onto multi-wall carbon nanotubes (CNTs) was performed by a solution method for hydrogen storage. The sample with a Li content of 1.2 wt% shows a maximal reversible hydrogen storage capacity of 3.9 wt% at 77 K and 106.66 kPa, which exceeds that of the un-doped CNTs by three times. According to the analyses of X-ray photoelectron spectroscopy, adsorption heat and nitrogen adsorption isotherms, the strong interaction between hydrogen molecules and the Li-doped CNTs, as well as the better charge isolation state of Li, may contribute to the improved hydrogen storage capacity. However, excessive Li may result in a lowering of the charge isolation state and a decrease in specific surface area and pore volume, and thus deteriorate the hydrogen storage capacity.
引用
收藏
页码:6490 / 6494
页数:5
相关论文
共 50 条
  • [21] Soft purification of N-doped and undoped multi-wall carbon nanotubes
    Rogelio Alvizo-Paez, Edgar
    Manuel Romo-Herrera, Jose
    Terrones, Humberto
    Terrones, Mauricio
    Ruiz-Garcia, Jaime
    Luis Hernandez-Lopez, Jose
    NANOTECHNOLOGY, 2008, 19 (15)
  • [22] Respiratory toxicity of multi-wall carbon nanotubes
    Muller, J
    Huaux, F
    Moreau, N
    Misson, P
    Heilier, JF
    Delos, M
    Arras, M
    Fonseca, A
    Nagy, JB
    Lison, D
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2005, 207 (03) : 221 - 231
  • [23] Adsorption properties of multi-wall carbon nanotubes
    Davydov, VY
    Kalashnikova, EV
    Karnatsevich, VL
    Kirillov, AI
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2004, 12 (1-2) : 513 - 518
  • [24] Stability of multi-wall carbon nanotubes in air
    Zhu Shuang-mei
    Li Jun-qing
    Pang Jin-hui
    Zhang Hua-shun
    Liang Er-jun
    NEW CARBON MATERIALS, 2010, 25 (04) : 308 - 312
  • [25] Effect of Multi-Wall Carbon Nanotubes Supported Nickel on Hydrogen Storage Properties of Mg-Based Alloy
    Yang Yang
    Zhu Yunfeng
    Wei Lingjun
    Huan Qingqing
    Li Liquan
    RARE METAL MATERIALS AND ENGINEERING, 2013, 42 (07) : 1459 - 1463
  • [27] Widely dispersed PEI-based nanocomposites with multi-wall carbon nanotubes by blending with a masterbatch
    Gonzalez, I.
    Eguiazabal, J. I.
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2013, 53 : 176 - 181
  • [28] Electrochemical lithium insertion of heat treated and chemically modified multi-wall carbon nanotubes
    Touhara, H
    Mukhopadhyay, I
    Okino, F
    Kawasaki, S
    Kyotani, T
    Tomita, A
    Hsu, WK
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 249 - 252
  • [29] Boron- and nitrogen-doped multi-wall carbon nanotubes for gas detection
    Adjizian, Jean-Joseph
    Leghrib, Radouane
    Koos, Antal A.
    Suarez-Martinez, Irene
    Crossley, Alison
    Wagner, Philipp
    Grobert, Nicole
    Llobet, Eduard
    Ewels, Christopher P.
    CARBON, 2014, 66 : 662 - 673
  • [30] Aerosol generation and measurement of multi-wall carbon nanotubes
    Toshihiko Myojo
    Takako Oyabu
    Kenichiro Nishi
    Chikara Kadoya
    Isamu Tanaka
    Mariko Ono-Ogasawara
    Hirokazu Sakae
    Tadashi Shirai
    Journal of Nanoparticle Research, 2009, 11 : 91 - 99