Optimal Operation and Control of Fluidized Bed Membrane Reactors for Steam Methane Reforming

被引:4
|
作者
Marquez-Ruiz, Alejandro [1 ]
Wu, Jiaen [2 ]
Ozkan, Leyla [1 ]
Gallucci, Fausto [2 ]
Annaland, Martin Van Sint [2 ]
机构
[1] Eindhoven Univ Technol, Dept Elect Engn, NL-5612 AJ Eindhoven, Netherlands
[2] Eindhoven Univ Technol, Dept Chem Engn & Chem, NL-5612 AZ Eindhoven, Netherlands
关键词
Fluidized Bed Membrane Reactors; Steam Methane Reforming; Optimal Operation; Model Based Controllers; CO2; CAPTURE;
D O I
10.1016/B978-0-12-818634-3.50206-X
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents the optimal operation and control of a Fluidized Bed Membrane Reactor (FBMR) for Steam Methane Reforming (SMR). First, a nonlinear distributed parameter dynamic model is developed. Next, the optimal operation of the system is studied by solving a dynamic optimization problem that maximizes the conversion and separation in the reactor. Based on the optimization result, reduced order linear models are developed and used in the design of conventional and model based controllers. The performance of these controllers are tested considering the variation in the inlet concentration of the feed to the reactor and the initial conditions.
引用
收藏
页码:1231 / 1236
页数:6
相关论文
共 50 条
  • [1] Stagewise fluidized bed membrane reactors for methane-steam reforming
    Abashar, MEE
    [J]. AFINIDAD, 2003, 60 (504) : 184 - 191
  • [2] Investigation of methane-steam reforming in fluidized bed membrane reactors
    Abashar, MEE
    Alhumaizi, KI
    Adris, AM
    [J]. CHEMICAL ENGINEERING RESEARCH & DESIGN, 2003, 81 (A2): : 251 - 258
  • [4] Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study
    Mahecha-Botero, Andres
    Chen, Zhongxiang
    Grace, John R.
    Elnashaie, S. S. E. H.
    Lim, C. Jim
    Rakib, Mohammad
    Yasuda, Isamu
    Shirasaki, Yoshinori
    [J]. CHEMICAL ENGINEERING SCIENCE, 2009, 64 (16) : 3598 - 3613
  • [5] Reaction/separation coupled equilibrium modeling of steam methane reforming in fluidized bed membrane reactors
    Xie, Donglai
    Qiao, Weiyan
    Wang, Ziliang
    Wang, Weixing
    Yu, Hao
    Peng, Feng
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (21) : 11798 - 11809
  • [6] A FLUIDIZED-BED MEMBRANE REACTOR FOR THE STEAM REFORMING OF METHANE
    ADRIS, AM
    ELNASHAIE, SSEH
    HUGHES, R
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 1991, 69 (05): : 1061 - 1070
  • [7] Theoretical comparison of packed bed and fluidized bed membrane reactors for methane reforming
    Gallucci, Fausto
    Van Sintannaland, Martin
    Kuipers, J. A. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2010, 35 (13) : 7142 - 7150
  • [8] Modeling of fluidized bed membrane reactors for hydrogen production from steam methane reforming with Aspen Plus
    Ye, Genyin
    Xie, Donglai
    Qiao, Weiyan
    Grace, John R.
    Lim, C. Jim
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (11) : 4755 - 4762
  • [9] Modeling of autothermal steam methane reforming in a fluidized bed membrane reactor
    Dogan, Meltem
    Posarac, Dusko
    Grace, John
    Adris, Alaa-Eldin M.
    Lim, C. Jim
    [J]. International Journal of Chemical Reactor Engineering, 2002, 1 (01)
  • [10] Modeling of Autothermal Steam Methane Reforming in a Fluidized Bed Membrane Reactor
    Dogan, Meltem
    Posarac, Dusko
    Grace, John
    Adris, Alaa-Eldin M.
    Lim, C. Jim
    [J]. INTERNATIONAL JOURNAL OF CHEMICAL REACTOR ENGINEERING, 2003, 1