Normalized dimensionality reduction using nonnegative matrix factorization

被引:5
|
作者
Zhu, Zhenfeng [1 ]
Guo, Yue-Fei [1 ]
Zhu, Xingquan [2 ,3 ]
Xue, Xiangyang [1 ]
机构
[1] Fudan Univ, Sch Comp Sci, Shanghai 200433, Peoples R China
[2] Univ Technol Sydney, QCIS Ctr, Fac Engn & Informat Technol, Sydney, NSW 2007, Australia
[3] Chinese Acad Sci, FEDS Ctr, Grad Univ, Beijing 100190, Peoples R China
基金
澳大利亚研究理事会; 国家高技术研究发展计划(863计划);
关键词
Subspace learning; Nonnegative matrix factorization; Dimensionality reduction; Normalization; Sparsity;
D O I
10.1016/j.neucom.2009.11.046
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we propose an iterative normalized compression method for dimensionality reduction using non-negative matrix factorization (NCMF). To factorize the instance matrix X into C x M, an objective function is defined to impose the normalization constraints to the basis matrix C and the coefficient matrix M. We argue that in many applications, instances are often normalized in one way or the other. By integrating data normalization constraints into the objective function and transposing the instance matrix, one can directly discover relations among different dimensions and devise effective and efficient procedure for matrix factorization. In the paper, we assume that feature dimensions in instance matrix are normalized, and propose an iterative solution NCMF to achieve rapid matrix factorization for dimensionality reduction. As a result, the basis matrix can be viewed as a compression matrix and the coefficient matrix becomes a mapping matrix. NCMF is simple, effective, and only needs to initialize the mapping matrix. Experimental comparisons on text, biological and image data demonstrate that NCMF gains 21.02% computational time reduction, 39.60% sparsity improvement for mapping matrix, and 8.59% clustering accuracy improvement. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1783 / 1793
页数:11
相关论文
共 50 条
  • [21] Dimensionality reduction using non-negative matrix factorization for information retrieval
    Tsuge, S
    Shishibori, M
    Kuroiwa, S
    Kita, K
    2001 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-5: E-SYSTEMS AND E-MAN FOR CYBERNETICS IN CYBERSPACE, 2002, : 960 - 965
  • [22] Community discovery using nonnegative matrix factorization
    Wang, Fei
    Li, Tao
    Wang, Xin
    Zhu, Shenghuo
    Ding, Chris
    DATA MINING AND KNOWLEDGE DISCOVERY, 2011, 22 (03) : 493 - 521
  • [23] Community discovery using nonnegative matrix factorization
    Fei Wang
    Tao Li
    Xin Wang
    Shenghuo Zhu
    Chris Ding
    Data Mining and Knowledge Discovery, 2011, 22 : 493 - 521
  • [24] Using underapproximations for sparse nonnegative matrix factorization
    Gillis, Nicolas
    Glineur, Francois
    PATTERN RECOGNITION, 2010, 43 (04) : 1676 - 1687
  • [25] Nonnegative matrix factorization of a correlation matrix
    Sonneveld, P.
    van Kan, J. J. I. M.
    Huang, X.
    Oosterlee, C. W.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 431 (3-4) : 334 - 349
  • [26] NONNEGATIVE MATRIX FACTORIZATION WITH MATRIX EXPONENTIATION
    Lyu, Siwei
    2010 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2010, : 2038 - 2041
  • [27] Nonnegative rank factorization of a nonnegative matrix A with A† A≥0
    Jain, SK
    Tynan, J
    LINEAR & MULTILINEAR ALGEBRA, 2003, 51 (01): : 83 - 95
  • [28] Nonnegative Matrix Factorization: When Data is not Nonnegative
    Wu, Siyuan
    Wang, Jim
    2014 7TH INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2014), 2014, : 227 - 231
  • [29] A robust dimensionality reduction and matrix factorization framework for data clustering
    Li, Ruyue
    Zhang, Lefei
    Du, Bo
    PATTERN RECOGNITION LETTERS, 2019, 128 : 440 - 446
  • [30] Quantized Nonnegative Matrix Factorization
    de Frein, Ruairi
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 377 - 382