One-particle irreducible Wilson action in the gradient flow exact renormalization group formalism

被引:1
|
作者
Sonoda, Hidenori [1 ]
Suzuki, Hiroshi [2 ]
机构
[1] Kobe Univ, Phys Dept, Kobe, Hyogo 6578501, Japan
[2] Kyushu Univ, Dept Phys, Nishi Ku, 744 Motooka, Fukuoka 8190395, Japan
来源
基金
日本学术振兴会;
关键词
B05; B32; EXACT EVOLUTION EQUATION; CHIRAL-SYMMETRY; MASSLESS QUARKS; BRS SYMMETRY; LATTICE; QCD;
D O I
10.1093/ptep/ptac047
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We define a one-particle irreducible (1PI) Wilson action in the gradient flow exact renormalization group (GFERG) formalism as the Legendre transform of a Wilson action. We consider quantum electrodynamics in particular, and show that the GFERG flow equation preserves the invariance of the 1PI Wilson action (excluding the gauge-fixing term) under the conventionalU(1) gauge transformation. This is in contrast to the invariance of the original Wilson action under a modified U(1) gauge transformation. The global chiral transformation also takes the conventional form for the 1PI Wilson action. Despite the complexity of the GFERG flow equation, the conventional form of the gauge and global chiral transformations may allow us to introduce a non-perturbative Ansatz for gauge and chiral invariant 1PI Wilson actions.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] The heavy quark potential from Wilson's exact renormalization group
    Lab. Phys. Theor. et Hautes Energies, Université de Paris XI, Bâtiment 211, F-91405 Orsay Cedex, France
    不详
    不详
    [J]. Eur. Phys. J. C, 3-4 (563-578):
  • [42] Flow of low energy couplings in the Wilson renormalization group
    Myers, RC
    Periwal, V
    [J]. PHYSICAL REVIEW D, 1998, 57 (04) : 2448 - 2455
  • [43] GRADIENT FLOWS FROM AN APPROXIMATION TO THE EXACT RENORMALIZATION-GROUP
    HAAGENSEN, PE
    KUBYSHIN, Y
    LATORRE, JI
    MORENO, E
    [J]. PHYSICS LETTERS B, 1994, 323 (3-4) : 330 - 338
  • [44] EXACT RENORMALIZATION-GROUP EQUATIONS IN ONE DIMENSION
    PRANGE, RE
    [J]. PHYSICAL REVIEW A, 1974, 9 (04): : 1711 - 1715
  • [45] Functional renormalization group and 2PI effective action formalism
    Blaizot, Jean-Paul
    Pawlowski, Jan M.
    Reinosa, Urko
    [J]. ANNALS OF PHYSICS, 2021, 431
  • [46] SCALING-FIELD REPRESENTATION OF WILSON EXACT RENORMALIZATION-GROUP EQUATION
    RIEDEL, EK
    GOLNER, GR
    NEWMAN, KE
    [J]. ANNALS OF PHYSICS, 1985, 161 (01) : 178 - 238
  • [47] SKELETON RENORMALIZATION PROCEDURE FOR THE ONE-PARTICLE GREEN-FUNCTION AND THE THERMODYNAMIC GIBBS POTENTIAL
    ORLEWICZ, K
    [J]. ACTA PHYSICA POLONICA A, 1987, 72 (03) : 357 - 381
  • [48] Hermitian one-particle density matrix through a semiclassical gradient expansion
    Bencheikh, K.
    Rasanen, E.
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2016, 49 (01)
  • [49] Little group generators for Dirac neutrino one-particle states
    Romero, R.
    [J]. REVISTA MEXICANA DE FISICA, 2021, 67 (01) : 25 - 32
  • [50] Response calculations based on an independent particle system with the exact one-particle density matrix: Polarizabilities
    Giesbertz, K. J. H.
    Gritsenko, O. V.
    Baerends, E. J.
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (18):