Optimal two-parameter geometric and arithmetic mean bounds for the Sandor-Yang mean

被引:16
|
作者
Qian, Wei-Mao [1 ]
Yang, Yue-Ying [2 ]
Zhang, Hong-Wei [3 ]
Chu, Yu-Ming [4 ]
机构
[1] Huzhou Vocat & Tech Coll, Sch Continuing Educ, Huzhou, Peoples R China
[2] Huzhou Vocat & Tech Coll, Sch Mech & Elect Engn, Huzhou, Peoples R China
[3] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha, Hunan, Peoples R China
[4] Huzhou Univ, Dept Math, Huzhou, Peoples R China
关键词
Arithmetic mean; Geometric mean; Quadratic mean; Yang mean; Sandor-Yang mean; NICHOLSONS BLOWFLIES MODEL; CONJUGATE-GRADIENT METHOD; DIFFERENTIAL-EQUATIONS; NEURAL-NETWORKS; NEWTON METHOD; LIMIT-CYCLES; CONVERGENCE; EXISTENCE; INEQUALITIES; SYSTEMS;
D O I
10.1186/s13660-019-2245-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the article, we provide the sharp bounds for the Sandor-Yang mean in terms of certain families of the two-parameter geometric and arithmetic mean and the one-parameter geometric and harmonic means. As applications, we present new bounds for a certain Yang mean and the inverse tangent function.
引用
收藏
页数:12
相关论文
共 50 条