Automatic 3-D Segmentation of Endocardial Border of the Left Ventricle From Ultrasound Images

被引:9
|
作者
Santiago, Carlos [1 ]
Nascimento, Jacinto C. [1 ]
Marques, Jorge S. [1 ]
机构
[1] Inst Super Tecn, Inst Syst & Robot, P-1049001 Lisbon, Portugal
关键词
3-D echocardiography; deformable models; image segmentation; left ventricle (LV); robust estimation; ROBUST SHAPE TRACKING; ECHOCARDIOGRAPHY; MODELS; HEART;
D O I
10.1109/JBHI.2014.2308424
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The segmentation of the left ventricle (LV) is an important task to assess the cardiac function in ultrasound images of the heart. This paper presents a novel methodology for the segmentation of the LV in three-dimensional (3-D) echocardiographic images based on the probabilistic data association filter (PDAF). The proposed methodology begins by initializing a 3-D deformable model either semiautomatically, with user input, or automatically, and it comprises the following feature hierarchical approach: 1) edge detection in the vicinity of the surface (low-level features); 2) edge grouping to obtain potential LV surface patches (mid-level features); and 3) patch filtering using a shape-PDAF framework (high-level features). This method provides good performance accuracy in 20 echocardiographic volumes, and compares favorably with the state-of-the-art segmentation methodologies proposed in the recent literature.
引用
收藏
页码:339 / 348
页数:10
相关论文
共 50 条
  • [41] Automatic Short Axis Orientation of the Left Ventricle in 3D Ultrasound Recordings
    Pedrosa, Joao
    Heyde, Brecht
    Heeren, Laurens
    Engvall, Jan
    Zamorano, Jose
    Papachristidis, Alexandros
    Edvardsen, Thor
    Claus, Piet
    D'hooge, Jan
    MEDICAL IMAGING 2016: ULTRASONIC IMAGING AND TOMOGRAPHY, 2016, 9790
  • [43] Automatic segmentation of the left ventricle in echocardiographic images using convolutional neural networks
    Kim, Taeouk
    Hedayat, Mohammadali
    Vaitkus, Veronica V.
    Belohlavek, Marek
    Krishnamurthy, Vinayak
    Borazjani, Iman
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2021, 11 (05) : 1763 - 1781
  • [44] Automatic left ventricle segmentation in T2 weighted CMR images
    Kadir K.A.
    Payne A.
    Soraghan J.J.
    Berry C.
    Advances in Intelligent and Soft Computing, 2010, 84 : 247 - 254
  • [45] SEGMENTATION OF SKIN TUMORS IN HIGH-FREQUENCY 3-D ULTRASOUND IMAGES
    Sciolla, Bruno
    Cowell, Lester
    Dambry, Thibaut
    Guibert, Beno It
    Delachartre, Philippe
    ULTRASOUND IN MEDICINE AND BIOLOGY, 2017, 43 (01): : 227 - 238
  • [46] 3-D active appearance models: Segmentation of cardiac MR and ultrasound images
    Mitchell, SC
    Bosch, JG
    Lelieveldt, BPF
    van der Geest, RJ
    Reiber, JHC
    Sonka, M
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2002, 21 (09) : 1167 - 1178
  • [47] Fast Segmentation of the Left Atrial Appendage in 3-D Transesophageal Echocardiographic Images
    Morais, Pedro
    Queiros, Sandro
    De Meester, Pieter
    Budts, Werner
    Vilaca, Joao L.
    Tavares, Joao Manuel R. S.
    D'hooge, Jan
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2018, 65 (12) : 2332 - 2342
  • [48] Segmentation of the Left Heart Ventricle in Ultrasound Images Using a Region Based Snake
    Landgren, Matilda
    Overgaard, Niels Christian
    Heyden, Anders
    MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669
  • [49] 3-D SEGMENTATION OF MR IMAGES OF THE HEAD FOR 3-D DISPLAY
    BOMANS, M
    HOHNE, KH
    TIEDE, U
    RIEMER, M
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 1990, 9 (02) : 177 - 183
  • [50] Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform
    Dima, A
    Scholz, M
    Obermayer, K
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2002, 11 (07) : 790 - 801