Visualisation of Exudates in Fundus Images using Radar Chart and Color Auto Correlogram Technique

被引:0
|
作者
Hassan, H. A. [1 ]
Tahir, N. M. [1 ]
Yassin, I. [1 ]
Yahaya, C. H. C. [1 ]
Shafie, S. M. [2 ]
机构
[1] Univ Teknol MARA UiTM, Fac Elect Engn, Shah Alam 40450, Selangor, Malaysia
[2] OPTIMAX Eye Specialist Ctr Sdn Bhd, Seremban 70200, N Sembilan, Malaysia
关键词
Diabetic Retinopathy (DR); Optic Disc (OD); Color Auto Correlogram (CAC); Artificial Neural Network (ANN);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fundus images provide an opportunity for early detection of diabetes. Generally, retina fundus images of diabetic patients exhibit exudates, which are lesions indicative of Diabetic Retinopathy (DR). Therefore, computational tools can be considered to be used in assisting ophthalmologists and medical doctor for the early screening of the disease. Hence in this paper, we proposed visualisation of exudates in fundus images using radar chart and Color Auto Correlogram (CAC) technique. The proposed technique requires that the Optic Disc (OD) from the fundus image be removed. Next, image normalisation was performed to standardise the colors in the fundus images. The exudates from the modified image are then extracted using Artificial Neural Network (ANN) and visualised using radar chart and CAC technique. The proposed technique was tested on 149 images of the publicly available MESSIDOR database. Experimental results suggest that the method has potential to be used for early indication of DR, by visualising the overlap between CAC features of the fundus images.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Detection of exudates from clinical fundus images using machine learning algorithms in diabetic maculopathy
    S. N. Sangeethaa
    S. Jothimani
    International Journal of Diabetes in Developing Countries, 2023, 43 : 25 - 35
  • [42] Detection of Hard Exudates in Colored Retinal Fundus Images Using the Support Vector Machine Classifier
    Narang, Arjun
    Narang, Gautam
    Singh, Soumya
    2013 6TH INTERNATIONAL CONGRESS ON IMAGE AND SIGNAL PROCESSING (CISP), VOLS 1-3, 2013, : 964 - 968
  • [43] Detection of exudates from clinical fundus images using machine learning algorithms in diabetic maculopathy
    Sangeethaa, S. N.
    Jothimani, S.
    INTERNATIONAL JOURNAL OF DIABETES IN DEVELOPING COUNTRIES, 2023, 43 (01) : 25 - 35
  • [44] Exudates and Blood Vessel Segmentation in Eye Fundus Images Using the Fourier and Cosine Discrete Transforms
    Lara Rodriguez, Luis David
    Urcid Serrano, Gonzalo
    COMPUTACION Y SISTEMAS, 2016, 20 (04): : 697 - 708
  • [45] Color correction system using a color compensation chart for the images from digital camera
    Lee, Seok-Han
    Um, Sang-Won
    Choi, Jong-Soo
    ADVANCES IN IMAGE AND VIDEO TECHNOLOGY, PROCEEDINGS, 2006, 4319 : 258 - +
  • [46] Diabetic Retinapathycal Nicking Identification and Classification Using Color Fundus Images
    Vinitha, K.
    Sundaresan, M.
    PROCEEDINGS OF THE 10TH INDIACOM - 2016 3RD INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT, 2016, : 3892 - 3897
  • [47] Automatic detection of hemorrhages on color fundus images using deep learning
    van Grinsven, Mark J. J. P.
    Venhuizen, Freerk
    van Ginneken, Bram
    Hoyng, Carel C. B.
    Theelen, Thomas
    Sanchez, Clara I.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (12)
  • [48] DETECTION OF MICROANEURYSM USING LOCAL RANK TRANSFORM IN COLOR FUNDUS IMAGES
    Kamble, Ravi
    Kokare, Manesh
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 4442 - 4446
  • [49] Detection of Hemorrhages in Diabetic Retinopathy analysis using Color Fundus Images
    Bharali, Priyakshi
    Medhi, Jyoti Prakash
    Nirmala, S. R.
    2015 IEEE 2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN INFORMATION SYSTEMS (RETIS), 2015, : 237 - 242
  • [50] Automated detection of exudates on color fundus image using region merging by k-NN graph
    Lin, Wei
    Liu, Hongzhi
    Xu, Mantao
    Zhang, Jiwu
    APCMBE 2008: 7TH ASIAN-PACIFIC CONFERENCE ON MEDICAL AND BIOLOGICAL ENGINEERING, 2008, 19 : 216 - +