Visualisation of Exudates in Fundus Images using Radar Chart and Color Auto Correlogram Technique

被引:0
|
作者
Hassan, H. A. [1 ]
Tahir, N. M. [1 ]
Yassin, I. [1 ]
Yahaya, C. H. C. [1 ]
Shafie, S. M. [2 ]
机构
[1] Univ Teknol MARA UiTM, Fac Elect Engn, Shah Alam 40450, Selangor, Malaysia
[2] OPTIMAX Eye Specialist Ctr Sdn Bhd, Seremban 70200, N Sembilan, Malaysia
关键词
Diabetic Retinopathy (DR); Optic Disc (OD); Color Auto Correlogram (CAC); Artificial Neural Network (ANN);
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fundus images provide an opportunity for early detection of diabetes. Generally, retina fundus images of diabetic patients exhibit exudates, which are lesions indicative of Diabetic Retinopathy (DR). Therefore, computational tools can be considered to be used in assisting ophthalmologists and medical doctor for the early screening of the disease. Hence in this paper, we proposed visualisation of exudates in fundus images using radar chart and Color Auto Correlogram (CAC) technique. The proposed technique requires that the Optic Disc (OD) from the fundus image be removed. Next, image normalisation was performed to standardise the colors in the fundus images. The exudates from the modified image are then extracted using Artificial Neural Network (ANN) and visualised using radar chart and CAC technique. The proposed technique was tested on 149 images of the publicly available MESSIDOR database. Experimental results suggest that the method has potential to be used for early indication of DR, by visualising the overlap between CAC features of the fundus images.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Abstraction of Exudates in Color Fundus Images
    Paul, Richu
    Vasanthi, S.
    ADVANCES IN COMPUTING AND COMMUNICATIONS, PT III, 2011, 192 : 213 - 220
  • [2] DETECTION OF EXUDATES ON COLOR FUNDUS IMAGES USING TEXTURE BASED FEATURE EXTRACTION
    Nugroho, Hanung Adi
    Oktoeberza, K. Z. Widhia
    Adji, Teguh Bharata
    Najamuddin, Faisal
    INTERNATIONAL JOURNAL OF TECHNOLOGY, 2015, 6 (02) : 121 - 129
  • [3] Detection of Microaneurysms and Exudates from Color Fundus Images by using SBGFRLS Algorithm
    Kumar, Manoj
    Manikandan
    Na, Malaya Kumar
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INFORMATICS AND ANALYTICS (ICIA' 16), 2016,
  • [4] A novel color space of fundus images for automatic exudates detection
    Khojasteh, Parham
    Aliahmad, Behzad
    Kumar, Dinesh Kant
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 49 : 240 - 249
  • [5] Segmentation of Exudates in Fundus Images Applying Color Mathematical Morphology
    Pastore, Juan, I
    Bouchet, Agustina
    Ordonez, Cristian
    Brun, Marcel
    Ballarin, Virginia
    16TH INTERNATIONAL SYMPOSIUM ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2020, 11583
  • [6] Detection of Hard Exudates in Color Fundus Images of the Human Retina
    JayaKumari, C.
    Maruthi, R.
    INTERNATIONAL CONFERENCE ON COMMUNICATION TECHNOLOGY AND SYSTEM DESIGN 2011, 2012, 30 : 297 - 302
  • [7] Projection Based Algorithm for Detecting Exudates in Color Fundus Images
    Eswaran, C.
    Saleh, Marwan D.
    Abdullah, Junaidi
    2014 19TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2014, : 459 - 463
  • [8] Automatic Classification of Exudates in Color Fundus Images Using an Augmented Deep Learning Procedure
    Wang, Lei
    Huang, Ying
    Lin, Bing
    Wu, Wencan
    Chen, Hao
    Pu, Jiantao
    THIRD INTERNATIONAL SYMPOSIUM ON IMAGE COMPUTING AND DIGITAL MEDICINE (ISICDM 2019), 2019, : 31 - 35
  • [9] Automatic Segmentation of Drusen and Exudates on Color Fundus Images using Generative Adversarial Networks
    Engelberts, Jonne
    Gonzalez-Gonzalo, Cristina
    Sanchez, Clara I.
    van Grinsven, Mark J.
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2019, 60 (09)
  • [10] Robust Detection of Exudates using Fundus Images
    Syed, Adeel M.
    Akbar, M. Usman
    Ahmed, Aleem
    Fatima, Joddat
    Akram, Usman
    2018 IEEE 21ST INTERNATIONAL MULTI-TOPIC CONFERENCE (INMIC), 2018,