Image denoising using a multivariate shrinkage function in the curvelet domain

被引:10
|
作者
Guo, Qiang [1 ]
Yu, Songnian [1 ]
机构
[1] Shanghai Univ, Sch Engn & Comp Sci, Shanghai 200072, Peoples R China
来源
IEICE ELECTRONICS EXPRESS | 2010年 / 7卷 / 03期
基金
中国国家自然科学基金;
关键词
curvelet transform; image denoising; statistical modeling;
D O I
10.1587/elex.7.126
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A new method based on the curvelet transform is proposed for image denoising. This method exploits a multivariate generalized spherically contoured exponential (GSCE) probability density function to model neighboring curvelet coefficients. Based on the multivariate probability model, which takes account of the dependency between the estimated curvelet coefficients and their neighbors, a multivariate shrinkage function for image denoising is derived by maximum a posteriori ( MAP) estimator. Experimental results show that the proposed method obtains better performance than the existing curvelet-based image denoising method.
引用
收藏
页码:126 / 131
页数:6
相关论文
共 50 条
  • [21] IMAGE DENOISING USING CONTEXTUAL MODELING OF CURVELET COEFFICIENTS
    Kechichian, R.
    Amiot, C.
    Girard, C.
    Pescatore, J.
    Chanussot, J.
    Desvignes, M.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 2659 - 2663
  • [22] Astronomical Image Denoising using Curvelet and Starlet Transform
    Anisimova, Elena
    Bednar, Jan
    Pata, Petr
    2013 23RD INTERNATIONAL CONFERENCE RADIOELEKTRONIKA (RADIOELEKTRONIKA), 2013, : 255 - 260
  • [23] Context adaptive image denoising through modeling of curvelet domain statistics
    Tessens, Linda
    Pizurica, Aleksandra
    Alecu, Alin
    Munteanu, Adrian
    Philips, Wilfried
    JOURNAL OF ELECTRONIC IMAGING, 2008, 17 (03)
  • [24] CT image denoising using locally adaptive shrinkage rule in tetrolet domain
    Kumar, Manoj
    Diwakar, Manoj
    JOURNAL OF KING SAUD UNIVERSITY-COMPUTER AND INFORMATION SCIENCES, 2018, 30 (01) : 41 - 50
  • [25] Multiscale reweighted smoothing regularization in curvelet domain for hyperspectral image denoising
    Ma, Fei
    Liu, Siyu
    Huo, Shuai
    Yang, Feixia
    Xu, Guangxian
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (12) : 3937 - 3961
  • [26] Wavelet shrinkage denoising using an exponential shrinkage function
    Ji Peng
    Zhang Chenghui
    Wang Jihong
    CHINESE JOURNAL OF ELECTRONICS, 2007, 16 (02): : 285 - 288
  • [27] Using bivariate threshold function for image denoising in NSCT domain
    Jia, Jian
    Jiao, Li-Cheng
    Xiang, Hai-Lin
    Dianzi Yu Xinxi Xuebao/Journal of Electronics and Information Technology, 2009, 31 (03): : 532 - 536
  • [28] Multivariate statistical models for image denoising in the wavelet domain
    Tan, Shan
    Jiao, Licheng
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2007, 75 (02) : 209 - 230
  • [29] Multivariate Statistical Models for Image Denoising in the Wavelet Domain
    Shan Tan
    Licheng Jiao
    International Journal of Computer Vision, 2007, 75 : 209 - 230
  • [30] Image Denoising Using Trivariate Shrinkage Filter in the Wavelet Domain and Joint Bilateral Filter in the Spatial Domain
    Yu, Hancheng
    Zhao, Li
    Wang, Haixian
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2009, 18 (10) : 2364 - 2369