Overexpression of GhMPK3 from Cotton Enhances Cold, Drought, and Salt Stress in Arabidopsis

被引:21
|
作者
Sadau, Salisu Bello [1 ]
Ahmad, Adeel [1 ]
Tajo, Sani Muhammad [1 ]
Ibrahim, Sani [2 ]
Kazeem, Bello Babatunde [3 ]
Wei, Hengling [1 ]
Yu, Shuxun [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Cotton Res, State Key Lab Cotton Biol, Anyang 455000, Peoples R China
[2] Chinese Acad Agr Sci, Oil Crops Res Inst, Minist Agr, Key Lab Biol & Genet Improvement Oil Crops, Wuhan 430062, Peoples R China
[3] Lianyungang Acad Agr Sci, Lianyungang 222000, Peoples R China
来源
AGRONOMY-BASEL | 2021年 / 11卷 / 06期
基金
国家重点研发计划;
关键词
MAPK; cold; drought; salt; gene cloning; Arabidopsis transformation; virus-induced gene silencing; ACTIVATED PROTEIN-KINASE; GENOME-WIDE IDENTIFICATION; ACTING REGULATORY ELEMENTS; TRANSGENIC ARABIDOPSIS; ABSCISIC-ACID; GENE FAMILY; ABIOTIC STRESS; MAPKKK GENE; ROOT-GROWTH; TOLERANCE;
D O I
10.3390/agronomy11061049
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Cotton production is hampered by a variety of abiotic stresses that wreak havoc on the growth and development of plants, resulting in significant financial losses. According to reports, cotton production areas have declined around the world as a result of the ongoing stress. Therefore, plant breeding programs are concentrating on abiotic stress-tolerant cotton varieties. Mitogen-activated protein kinase (MAPK) cascades are involved in plant growth, stress responses, and the hormonal signaling pathway. In this research, three abiotic stresses (cold, drought, and salt) were analyzed on GhMPK3 transformed Arabidopsis plants. The transgenic plant's gene expression and morphologic analysis were studied under cold, drought, and salt stress. Physiological parameters such as relative leaf water content, excised leaf water loss, chlorophyll content, and ion leakage showed that overexpressed plants possess more stable content under stress conditions compared with the WT plants. Furthermore, GhMPK3 overexpressed plants had greater antioxidant activities and weaker oxidant activities. Silencing GhMPK3 in cotton inhibited its tolerance to drought stress. Our research findings strongly suggest that GhMPK3 can be regarded as an essential gene for abiotic stress tolerance in cotton plants.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis
    ZONG Na
    LI Xing-juan
    WANG Lei
    WANG Ying
    WEN Hong-tao
    LI Ling
    ZHANG Xia
    FAN Yun-liu
    ZHAO Jun
    Journal of Integrative Agriculture, 2018, 17 (11) : 2379 - 2393
  • [32] Overexpression of the Jojoba Aquaporin Gene, ScPIP1, Enhances Drought and Salt Tolerance in Transgenic Arabidopsis
    Wang, Xing
    Gao, Fei
    Bing, Jie
    Sun, Weimin
    Feng, Xiuxiu
    Ma, Xiaofeng
    Zhou, Yijun
    Zhang, Genfa
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (01):
  • [33] Overexpression of Arabidopsis ubiquitin ligase AtPUB46 enhances tolerance to drought and oxidative stress
    Adler, Guy
    Mishra, Amit Kumar
    Maymon, Tzofia
    Raveh, Dina
    Bar-Zvi, Dudy
    PLANT SCIENCE, 2018, 276 : 220 - 228
  • [34] Overexpression of wheat TaNCED gene in Arabidopsis enhances tolerance to drought stress and delays seed germination
    Tong, S. -M.
    Xi, H. -X.
    Ai, K. -J.
    Hou, H. -S
    BIOLOGIA PLANTARUM, 2017, 61 (01) : 64 - 72
  • [35] Overexpression of ABA receptor gene VsPYL5 from common vetch enhances salt and cold tolerance in Arabidopsis
    Sun, Yanmei
    Geng, Bohao
    Sun, Hongjian
    You, Juan
    Guo, Zhenfei
    Shi, Haifan
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2024, 220
  • [36] GhMYB44 enhances stomatal closure to confer drought stress tolerance in cotton and Arabidopsis
    Duan, Bailin
    Xie, Xiaofang
    Jiang, Yanhua
    Zhu, Ning
    Zheng, Hongli
    Liu, Yuxin
    Hua, Xuejun
    Zhao, Yanyan
    Sun, Yuqiang
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2023, 198
  • [37] Overexpression and knockdown of cotton GhdadD gene reveals its drought and salt stress tolerance role
    Zhang, Yuanyuan
    Zheng, Jie
    Linyerera, Shiraku Margaret
    Magwanga, Richard Odongo
    Hou, Yuqing
    Wang, Yuhong
    Xu, Yanchao
    Khan, Aziz
    Yu, Shuxun
    Zhou, Zhongli
    Liu, Fang
    Cai, Xiaoyan
    ISCIENCE, 2024, 27 (01)
  • [38] Overexpression of the CpCOR413PM1 Gene from Wintersweet (Chimonanthus praecox) Enhances Cold and Drought Tolerance in Arabidopsis
    Deng, Yeyuan
    Lin, Yi
    Wei, Guo
    Hu, Xiaoqian
    Zheng, Yanghui
    Ma, Jing
    HORTICULTURAE, 2024, 10 (06)
  • [39] Overexpression of AmDUF1517 enhanced tolerance to salinity, drought, and cold stress in transgenic cotton
    HAO Yu-qiong
    LU Guo-qing
    WANG Li-hua
    WANG Chun-ling
    GUO Hui-ming
    LI Yi-fei
    CHENG Hong-mei
    JournalofIntegrativeAgriculture, 2018, 17 (10) : 2204 - 2214
  • [40] Overexpression of AmDUF1517 enhanced tolerance to salinity, drought, and cold stress in transgenic cotton
    Hao Yu-qiong
    Lu Guo-qing
    Wang Li-hua
    Wang Chun-ling
    Guo Hui-ming
    Li Yi-fei
    Cheng Hong-mei
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2018, 17 (10) : 2204 - 2214