Visualization of orbits and pattern evocation for the double spherical pendulum

被引:0
|
作者
Marsden, JE [1 ]
Scheurle, J [1 ]
Wendlandt, JM [1 ]
机构
[1] CALTECH,PASADENA,CA 91125
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
引用
收藏
页码:213 / 232
页数:20
相关论文
共 50 条
  • [21] Oscillatory orbits of the parametrically excited pendulum
    Garira, W
    Bishop, SR
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2003, 13 (10): : 2949 - 2958
  • [22] Heteroclinic orbits for a discrete pendulum equation
    Xiao, Huafeng
    Yu, Jianshe
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2011, 17 (09) : 1267 - 1280
  • [23] On the periodic orbits of the perturbed Wilberforce pendulum
    Teresa de Bustos, M.
    Lopez, Miguel A.
    Martinez, Raquel
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (04) : 932 - 939
  • [24] Note on "pendulum" orbits in atomic models
    Lindsay, RB
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1927, 13 : 413 - 419
  • [25] Dynamics and chaos: The spherical pendulum
    Palacios, A
    Gross, LM
    Rockwood, AP
    COMPUTER GRAPHICS FORUM, 1996, 15 (04) : 263 - 270
  • [26] HOMOGENEOUS SPHERICAL DATA OF ORBITS IN SPHERICAL EMBEDDINGS
    GIULIANO GAGLIARDI
    JOHANNES HOFSCHEIER
    Transformation Groups, 2015, 20 : 83 - 98
  • [27] Spherical pendulum, actions, and spin
    Richter, PH
    Dullin, HR
    Waalkens, H
    Wiersig, J
    JOURNAL OF PHYSICAL CHEMISTRY, 1996, 100 (49): : 19124 - 19135
  • [28] The Spherical Kapitza – Whitney Pendulum
    Ivan Yu. Polekhin
    Regular and Chaotic Dynamics, 2022, 27 : 65 - 76
  • [29] APPROXIMATION OF THE MOVEMENT OF THE SPHERICAL PENDULUM
    Fischer, C.
    Naprstek, J.
    ENGINEERING MECHANICS 2016, 2016, : 154 - 157
  • [30] HOMOGENEOUS SPHERICAL DATA OF ORBITS IN SPHERICAL EMBEDDINGS
    Gagliardi, Giuliano
    Hofscheier, Johannes
    TRANSFORMATION GROUPS, 2015, 20 (01) : 83 - 98