On the mathematical formulation and parameter estimation of the Norwegian Sea plankton system

被引:5
|
作者
Broström, G
Drange, H
机构
[1] Univ Gothenburg, Ctr Earth Sci, Dept Oceanog, S-40530 Gothenburg, Sweden
[2] Nansen Environm & Remote & Sensing Ctr, GC Rieber Climate Inst, N-5037 Solheimsviken, Norway
来源
SARSIA | 2000年 / 85卷 / 03期
关键词
ecosystem modelling; parameter estimation; stability properties; Norwegian Sea;
D O I
10.1080/00364827.2000.10414574
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
The mathematical description of the oceanic plankton system is often characterised by a simple structure where the major components of the system are governed by the dissolved nutrient concentration N, the phytoplankton biomass I: and the zooplankton biomass Z (also known as the NPZ model). The flows between the variables can be formulated in a variety of ways that, in general, alter the time development of the model. In this study we investigate how the numerical value of model parameters that are hard to determine experimentally can be estimated from in situ field observations. By that, we can assign parameter values to each model Formulation such that they should follow a prescribed time development that is consistent with data. Accordingly, this gives us a tool to compare model formulations in a consistent way. The study emphasises the importance of analysing the model with respect to stability and multiple solutions. The study is exemplified using observations from Ocean Weather Station Mike (66 degreesN, 2 degreesE) in the Norwegian Sea, illustrating the need for a proper model formulation in order to reproduce measurements.
引用
收藏
页码:211 / 225
页数:15
相关论文
共 50 条
  • [41] Parameter Estimation for a Mathematical Model of the Urine Formation of Neonatal Rats
    Marcano, Mariano
    Bonilla-Felix, Melvin
    FASEB JOURNAL, 2011, 25
  • [42] Genetic algorithms for parameter estimation in mathematical modeling of glucose metabolism
    Morbiducci, U
    Tura, A
    Grigioni, M
    COMPUTERS IN BIOLOGY AND MEDICINE, 2005, 35 (10) : 862 - 874
  • [43] MATHEMATICAL PROGRAMMING FORMULATION OF ESTIMATION PROBLEMS RELATED TO CONTINGENCY-TABLES
    MELNICK, EL
    YECHIALI, U
    MANAGEMENT SCIENCE, 1976, 22 (06) : 701 - 703
  • [44] CosmoSIS: a system for MC parameter estimation
    Bridle, S.
    Dodelson, S.
    Jennings, E.
    Kowalkowski, J.
    Manzotti, A.
    Paterno, M.
    Rudd, D.
    Sehrish, S.
    Zuntz, J.
    21ST INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS (CHEP2015), PARTS 1-9, 2015, 664
  • [45] System parameter estimation by evolutionary strategy
    Hatanaka, T
    Uosaki, K
    Tanaka, H
    Yamada, Y
    SICE '96 - PROCEEDINGS OF THE 35TH SICE ANNUAL CONFERENCE: INTERNATIONAL SESSION PAPERS, 1996, : 1045 - 1048
  • [46] Modelling and parameter estimation of a cell system
    Bai, Er-Wei
    Fotedar, Sunaina
    Moy, Alan
    INTERNATIONAL JOURNAL OF MODELLING IDENTIFICATION AND CONTROL, 2009, 6 (01) : 72 - 80
  • [47] IDENTIFICATION AND SYSTEM PARAMETER-ESTIMATION
    AXELBY, GS
    AUTOMATICA, 1990, 26 (01) : 1 - 1
  • [48] ESTIMATION OF A DISPLACEMENT PARAMETER OF A QUANTUM SYSTEM
    HELSTROM, CW
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 1974, 11 (06) : 357 - 378
  • [49] Parameter Estimation of a Thermal Fluid System
    Burns, John A.
    Cliff, Eugene M.
    Herdman, Terry L.
    2018 ANNUAL AMERICAN CONTROL CONFERENCE (ACC), 2018, : 122 - 127
  • [50] Power system parameter estimation:: A survey
    Zarco, P
    Expósito, AG
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2000, 15 (01) : 216 - 222