Biomedical applications of the powder-based 3D printed titanium alloys: A review

被引:47
|
作者
Guo, Amy X. Y. [1 ]
Cheng, Liangjie [1 ]
Zhan, Shuai [1 ]
Zhang, Shouyang [1 ]
Xiong, Wei [1 ]
Wang, Zihan [1 ]
Wang, Gang [1 ]
Cao, Shan Cecilia [1 ]
机构
[1] Shanghai Univ, Mat Genome Inst, Shanghai 200444, Peoples R China
关键词
The powder-based 3D printing technology; Ti-based alloys; Biomedical applications; Artificial intelligence; MECHANICAL-PROPERTIES; ORTHOPEDIC IMPLANTS; ANTIBACTERIAL ACTIVITY; TOPOLOGICAL DESIGN; GRAIN-REFINEMENT; BONE INGROWTH; IN-VIVO; MICROSTRUCTURE; SCAFFOLDS; DEPOSITION;
D O I
10.1016/j.jmst.2021.11.084
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
3D printing technology is a new type of precision forming technology and the core technology of the third industrial revolution. The powder-based 3D printing technology of titanium and its alloys have received great attention in biomedical applications since its advantages of custom manufacturing, costsaving, time-saving, and resource-saving potential. In particular, the personalized customization of 3D printing can meet specific needs and achieve precise control of micro-organization and structural design. The purpose of this review is to present the most advanced multi-material 3D printing methods for titanium-based biomaterials. We first reviewed the bone tissue engineering, the application of titanium alloy as bone substitutes and the development of manufacturing technology, which emphasized the advantages of 3D printing technology over traditional manufacturing methods. What is more, the optimization design of the hierarchical structure was analyzed to achieve the best mechanical properties, and the biocompatibility and osseointegration ability of the porous titanium alloy after implantation in living bodies was analyzed. Finally, we emphasized the development of digital tools such as artificial intelligence, which provides new ideas for the rational selection of processing parameters. The 3D printing titanium-based alloys will meet the huge market demand in the biomedical field, but there are still many challenges, such as the trade-off between high strength and low modulus, optimization of process parameters and structural design. We believe that the combination of mechanical models, machine learning, and metallurgical knowledge may shape the future of metal printing. ?? 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology.
引用
收藏
页码:252 / 264
页数:13
相关论文
共 50 条
  • [21] Powder based additive manufacturing for biomedical application of titanium and its alloys: a review
    Jang, Tae-Sik
    Kim, DongEung
    Han, Ginam
    Yoon, Chang-Bun
    Jung, Hyun-Do
    BIOMEDICAL ENGINEERING LETTERS, 2020, 10 (04) : 505 - 516
  • [22] Metallic Architectures from 3D-Printed Powder-Based Liquid Inks
    Jakus, Adam E.
    Taylor, Shannon L.
    Geisendorfer, Nicholas R.
    Dunand, David C.
    Shah, Ramille N.
    ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (45) : 6985 - 6995
  • [23] Powder based additive manufacturing for biomedical application of titanium and its alloys: a review
    Tae-Sik Jang
    DongEung Kim
    Ginam Han
    Chang-Bun Yoon
    Hyun-Do Jung
    Biomedical Engineering Letters, 2020, 10 : 505 - 516
  • [24] Powder-Based 3D Printing of Autonomous Concentration Gradient Generators
    Parra-Cabrera, Cesar
    Dochy, Ruben
    Adriaenssens, Jonas
    Van Cauteren, Hans
    Piovesan, Agnese
    Verboven, Pieter
    Nicolai, Bart
    Ameloot, Rob
    ADVANCED ENGINEERING MATERIALS, 2023, 25 (02)
  • [25] Printability, accuracy and strength of geopolymer made using powder-based 3D printing for construction applications
    Xia, Ming
    Nematollahi, Behzad
    Sanjayan, Jay
    AUTOMATION IN CONSTRUCTION, 2019, 101 : 179 - 189
  • [26] A REVIEW OF THE SURFACE MODIFICATIONS OF TITANIUM ALLOYS FOR BIOMEDICAL APPLICATIONS
    Manjaiah, Mallaiah
    Laubscher, Rudolph Frans
    MATERIALI IN TEHNOLOGIJE, 2017, 51 (02): : 181 - 193
  • [27] Testing Bulk Properties of Powder-Based 3D-Printed Reservoir Rock Proxies
    Franciszek J. Hasiuk
    Transport in Porous Media, 2019, 129 : 501 - 520
  • [28] DESIGN AND BIOLOGICAL SIMULATION OF 3D PRINTED LATTICES FOR BIOMEDICAL APPLICATIONS
    Egan, Paul F.
    PROCEEDINGS OF THE ASME INTERNATIONAL DESIGN ENGINEERING TECHNICAL CONFERENCES AND COMPUTERS AND INFORMATION IN ENGINEERING CONFERENCE, 2019, VOL 2A, 2020,
  • [29] Powder Bed Fusion 3D Printing in Precision Manufacturing for Biomedical Applications: A Comprehensive Review
    Joshua, Rajan John Nekin
    Raj, Sakthivel Aravind
    Hameed Sultan, Mohamed Thariq
    Lukaszewicz, Andrzej
    Jozwik, Jerzy
    Oksiuta, Zbigniew
    Dziedzic, Krzysztof
    Tofil, Arkadiusz
    Shahar, Farah Syazwani
    MATERIALS, 2024, 17 (03)
  • [30] 3D printed tissue models: From hydrogels to biomedical applications
    Cadamuro, Francesca
    Nicotra, Francesco
    Russo, Laura
    JOURNAL OF CONTROLLED RELEASE, 2023, 354 : 726 - 745