Periodic motion of discrete dynamical system

被引:0
|
作者
Zhao, Jiemin [1 ]
机构
[1] Beijing Union Univ, Dept Appl Math & Phys, Beijing 100101, Peoples R China
关键词
discrete system; initial value; integer; periodic motion;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We give an existence-uniqueness result of periodic motion for discrete dynamical system x(n + 1) = f ( n, x(n)), (n, x) is an element of Z x R-m.
引用
收藏
页码:2424 / 2425
页数:2
相关论文
共 50 条
  • [31] Canonical Kane's Equations of Motion for Discrete Dynamical Systems
    Bajodah, Abdulrahman H.
    Hodges, Dewey H.
    AIAA JOURNAL, 2019, 57 (10) : 4226 - 4240
  • [32] On a Dynamical System that Describes the Motion of a Parachutist
    Klochkova I.Y.
    Journal of Mathematical Sciences, 2020, 248 (4) : 404 - 408
  • [33] Some theorems on the almost-periodic solutions of discrete dynamical systems
    Lassoued, Dhaou
    Zhou, Hui
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 297 : 469 - 507
  • [34] Periodic behaviour of nonlinear, second-order discrete dynamical systems
    Maroncelli, Daniel
    Rodriguezb, Jesus
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2016, 22 (02) : 280 - 294
  • [35] DISCRETE DYNAMICAL-SYSTEMS AND BIFURCATION FOR PERIODIC DIFFERENTIAL-EQUATIONS
    BERNFELD, SR
    SALVADORI, L
    VISENTIN, F
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1988, 12 (09) : 881 - 893
  • [36] A note on discrete-time dynamical systems under periodic perturbation
    Li, Huimin
    Yang, Xiaosong
    DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2006, 2006
  • [37] Discrete periodic solitons and dynamical analysis for an integrable coupled inhomogeneous lattice
    Yuan, Cuilian
    Liu, Wenjun
    Yang, Hujiang
    Tian, Ye
    CHAOS SOLITONS & FRACTALS, 2024, 185
  • [38] PERIODIC-ORBITS IN A RESONANT DYNAMICAL SYSTEM
    CARANICOLAS, N
    CELESTIAL MECHANICS, 1984, 33 (03): : 209 - 215
  • [39] PERIODIC ORBITS OF A DYNAMICAL SYSTEM RELATED TO A KNOT
    Lyubich, Lilya
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 2011, 20 (03) : 411 - 426
  • [40] Bifurcation boundaries of three-frequency quasi-periodic oscillations in discrete-time dynamical system
    Kamiyama, Kyohei
    Inaba, Naohiko
    Sekikawa, Munehisa
    Endo, Tetsuro
    PHYSICA D-NONLINEAR PHENOMENA, 2014, 289 : 12 - 17