INPAINTING WITH FOKKER-PLANCK EQUATION

被引:0
|
作者
Ignat, Anca [1 ]
机构
[1] Univ Alexandru Joan Cuza Iasi, Fac Comp Sci, Gen Berthelot 16, Iasi 700483, Romania
关键词
Fokker-Planck equation; implicit scheme; image inpainting; ANISOTROPIC DIFFUSION; IMAGE;
D O I
暂无
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In the present paper we employ the Fokker-Planck equation for completing an image with missing information. Using this equation has three advantages. The first one is the fact that this equation has a mild solution. The second advantage is that the implicit approximation scheme provides a sequence of solutions which converges to the solution of the Fokker-Planck equation. The third quality of this equation is the low regularization effect on the initial data, thus preserving the edges from the inpainted image. The numerical experiments show that this equation provides a good solution for the inpainting problem.
引用
收藏
页码:225 / 233
页数:9
相关论文
共 50 条
  • [1] FOKKER-PLANCK EQUATION
    DESLOGE, EA
    AMERICAN JOURNAL OF PHYSICS, 1963, 31 (04) : 237 - &
  • [2] Fokker-Planck equation and subdiffusive fractional Fokker-Planck equation of bistable systems with sinks
    Chow, CW
    Liu, KL
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 341 : 87 - 106
  • [3] On symmetries of the Fokker-Planck equation
    Kozlov, Roman
    JOURNAL OF ENGINEERING MATHEMATICS, 2013, 82 (01) : 39 - 57
  • [4] PROPERTIES OF FOKKER-PLANCK EQUATION
    LEWIS, MB
    HOGAN, JT
    PHYSICS OF FLUIDS, 1968, 11 (04) : 761 - &
  • [5] Fractional Fokker-Planck equation
    El-Wakil, SA
    Zahran, MA
    CHAOS SOLITONS & FRACTALS, 2000, 11 (05) : 791 - 798
  • [6] The differential equation of Fokker-Planck
    Bernstein, S
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1933, 196 : 1062 - 1064
  • [7] Dynamics of the Fokker-Planck equation
    Jordan, R
    Kinderlehrer, D
    Otto, F
    PHASE TRANSITIONS, 1999, 69 (03) : 271 - 288
  • [8] Parametric Fokker-Planck Equation
    Li, Wuchen
    Liu, Shu
    Zha, Hongyuan
    Zhou, Haomin
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 715 - 724
  • [9] A SOLUTION OF A FOKKER-PLANCK EQUATION
    ENGLEFIELD, MJ
    PHYSICA A, 1990, 167 (03): : 877 - 886
  • [10] THE THERMALIZED FOKKER-PLANCK EQUATION
    FRISCH, HL
    NOWAKOWSKI, B
    JOURNAL OF CHEMICAL PHYSICS, 1993, 98 (11): : 8963 - 8969