Jointly determining the state dimension and lag order for Markov-switching vector autoregressive models

被引:3
|
作者
Li, Nan [1 ]
Kwok, Simon S. [2 ]
机构
[1] Barclays Bank Plc, London, England
[2] Univ Sydney, Sch Econ, Camperdown, NSW 2006, Australia
关键词
Business cycle; information criteria; model selection; regime switching; vector autoregression; MAXIMUM-LIKELIHOOD ESTIMATOR; TIME-SERIES; PROBABILISTIC FUNCTIONS; NUMBER; INFORMATION; SELECTION; US; REGIMES;
D O I
10.1111/jtsa.12587
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This article studies the problem of joint selection of the state dimension and lag order for a class of Markov-switching vector autoregressive models, in which all parameters are presumed to be regime-dependent. To this end, three complexity-penalized criteria are considered, and a new criterion is derived by minimizing the Kullback-Leibler divergence. The efficacy of the procedure is evaluated by means of Monte Carlo experiments. We illustrate the usefulness of the joint model selection procedure with empirical applications to the modeling of business cycles in the USA and Australia.
引用
收藏
页码:471 / 491
页数:21
相关论文
共 50 条
  • [31] Markov-switching generalized additive models
    Roland Langrock
    Thomas Kneib
    Richard Glennie
    Théo Michelot
    Statistics and Computing, 2017, 27 : 259 - 270
  • [32] On Markov-switching periodic ARMA models
    Aliat, Billel
    Hamdi, Faycal
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2018, 47 (02) : 344 - 364
  • [33] Stationarity of Markov-switching ARMA models
    Francq, C
    Zakoïan, JM
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (11): : 1031 - 1034
  • [34] Assessing marine operations with a Markov-switching autoregressive metocean model
    Paterson, Jack
    Thies, Philipp R.
    Sueur, Roman
    Lonchampt, Jerome
    D'Amico, Federico
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART M-JOURNAL OF ENGINEERING FOR THE MARITIME ENVIRONMENT, 2020, 234 (04) : 785 - 802
  • [35] Minimal state variable solutions to Markov-switching rational expectations models
    Farmer, Roger E. A.
    Waggoner, Daniel F.
    Zha, Tao
    JOURNAL OF ECONOMIC DYNAMICS & CONTROL, 2011, 35 (12): : 2150 - 2166
  • [36] Markov-switching vector autoregressive neural networks and sensitivity analysis of environment, economic growth and petrol prices
    Melike Bildirici
    Özgür Ersin
    Environmental Science and Pollution Research, 2018, 25 : 31630 - 31655
  • [37] State smoothing in Markov-switching time-frequency GARCH models
    Abramson, Ari
    Cohen, Israel
    IEEE SIGNAL PROCESSING LETTERS, 2006, 13 (06) : 377 - 380
  • [38] Probabilistic forecasting of wind power at the minute time-scale with Markov-switching autoregressive models
    Pinson, Pierre
    Madsen, Henrik
    2008 10TH INTERNATIONAL CONFERENCE ON PROBABILISTIC METHODS APPLIED TO POWER SYSTEMS, 2008, : 98 - 105
  • [39] Markov-switching vector autoregressive neural networks and sensitivity analysis of environment, economic growth and petrol prices
    Bildirici, Melike
    Ersin, Ozgur
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (31) : 31630 - 31655
  • [40] Understanding Markov-switching rational expectations models
    Farmer, Roger E. A.
    Waggoner, Daniel F.
    Zha, Tao
    JOURNAL OF ECONOMIC THEORY, 2009, 144 (05) : 1849 - 1867