The use of random-effect models for high-dimensional variable selection problems

被引:10
|
作者
Kwon, Sunghoon [1 ]
Oh, Seungyoung [2 ]
Lee, Youngjo [2 ]
机构
[1] Konkuk Univ, Dept Appl Stat, Seoul, South Korea
[2] Seoul Natl Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Generalized linear model; Hierarchical likelihood; High-dimension; Random effect; Unbounded penalty; Variable selection; NONCONCAVE PENALIZED LIKELIHOOD; DIVERGING NUMBER; LINEAR-MODELS; REGRESSION; REGULARIZATION; CLASSIFICATION; MICROARRAYS; SHRINKAGE; LASSO;
D O I
10.1016/j.csda.2016.05.016
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We study the use of random-effect models for variable selection in high-dimensional generalized linear models where the number of covariates exceeds the sample size. Certain distributional assumptions on the random effects produce a penalty that is non-convex and unbounded at the origin. We introduce a unified algorithm that can be applied to various statistical models including generalized linear models. Simulation studies and data analysis are provided. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:401 / 412
页数:12
相关论文
共 50 条
  • [41] Fitting via alternative random-effect models
    Lee, Y
    Nelder, JA
    STATISTICS AND COMPUTING, 2006, 16 (01) : 69 - 75
  • [42] Concave group methods for variable selection and estimation in high-dimensional varying coefficient models
    Yang GuangRen
    Huang Jian
    Zhou Yong
    SCIENCE CHINA-MATHEMATICS, 2014, 57 (10) : 2073 - 2090
  • [43] Bayesian variable selection in clustering high-dimensional data
    Tadesse, MG
    Sha, N
    Vannucci, M
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2005, 100 (470) : 602 - 617
  • [44] Improving Variable Selection for High-Dimensional Propensity Scores
    Wyss, Richard
    Schneeweiss, Sebastian
    Eddings, Wesley
    van der Laan, Mark J.
    Franklin, Jessica M.
    PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2016, 25 : 146 - 147
  • [45] Variable selection in high-dimensional partially linear additive models for composite quantile regression
    Guo, Jie
    Tang, Manlai
    Tian, Maozai
    Zhu, Kai
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2013, 65 : 56 - 67
  • [46] Concave group methods for variable selection and estimation in high-dimensional varying coefficient models
    YANG GuangRen
    HUANG Jian
    ZHOU Yong
    ScienceChina(Mathematics), 2014, 57 (10) : 2073 - 2090
  • [47] An Improved Forward Regression Variable Selection Algorithm for High-Dimensional Linear Regression Models
    Xie, Yanxi
    Li, Yuewen
    Xia, Zhijie
    Yan, Ruixia
    IEEE ACCESS, 2020, 8 (08): : 129032 - 129042
  • [48] Sparse Bayesian variable selection in high-dimensional logistic regression models with correlated priors
    Ma, Zhuanzhuan
    Han, Zifei
    Ghosh, Souparno
    Wu, Liucang
    Wang, Min
    STATISTICAL ANALYSIS AND DATA MINING, 2024, 17 (01)
  • [49] Variable selection for proportional hazards models with high-dimensional covariates subject to measurement error
    Chen, Baojiang
    Yuan, Ao
    Yi, Grace Y.
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2021, 49 (02): : 397 - 420
  • [50] Concave group methods for variable selection and estimation in high-dimensional varying coefficient models
    GuangRen Yang
    Jian Huang
    Yong Zhou
    Science China Mathematics, 2014, 57 : 2073 - 2090