A latent autoregressive model for longitudinal binary data subject to informative missingness

被引:30
|
作者
Albert, PS [1 ]
Follmann, DA
Wang, SHA
Suh, EB
机构
[1] NCI, Biometr Res Branch, NIH, Bethesda, MD 20892 USA
[2] NHLBI, Off Biostat Res, NIH, Bethesda, MD 20892 USA
[3] NIH, Div Computat Biosci, Ctr Informat Technol, Bethesda, MD 20892 USA
关键词
informative missingness; longitudinal data; nonignorable missing data; repeated binary data;
D O I
10.1111/j.0006-341X.2002.00631.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Longitudinal clinical trials often collect long sequences of binary data. Our application is a recent clinical trial in opiate addicts that examined the effect of a new treatment on repeated binary urine tests to assess opiate use over an extended follow-up. The dataset had two sources of missingness: dropout and intermittent missing observations. The primary endpoint of the study was comparing the marginal probability of a positive urine test over follow-up across treatment arms. We present a latent autoregressive model for longitudinal binary data subject to informative missingness. In this model, a Gaussian autoregressive process is shared between the binary response and missing-data processes, thereby inducing informative missingness. Our approach extends the work of others who have developed models that link the various processes through a shared random effect but do not allow for autocorrelation. We discuss parameter estimation using Monte Carlo EM and demonstrate through simulations that incorporating within-subject autocorrelation through a latent autoregressive process can be very important when longitudinal binary data is subject to informative missingness. We illustrate our new methodology using the opiate clinical trial data.
引用
收藏
页码:631 / 642
页数:12
相关论文
共 50 条
  • [21] A weighted combination of pseudo-likelihood estimators for longitudinal binary data subject to non-ignorable non-monotone missingness
    Troxel, Andrea B.
    Lipsitz, Stuart R.
    Fitzmaurice, Garrett M.
    Ibrahim, Joseph G.
    Sinha, Debajyoti
    Molenberghs, Geert
    STATISTICS IN MEDICINE, 2010, 29 (14) : 1511 - 1521
  • [22] Analysis of ordinal outcomes with longitudinal covariates subject to missingness
    Goodman, Melody S.
    Li, Yi
    Stoddard, Anne M.
    Sorensen, Glorian
    JOURNAL OF APPLIED STATISTICS, 2014, 41 (05) : 1040 - 1052
  • [23] Allowing for informative missingness in aggregate data meta-analysis with continuous or binary outcomes: Extensions to metamiss
    Chaimani, Anna
    Mavridis, Dimitris
    Higgins, Julian P. T.
    Salanti, Georgia
    White, Ian R.
    STATA JOURNAL, 2018, 18 (03): : 716 - 740
  • [24] A multistate Markov chain model for longitudinal, categorical quality-of-life data subject to non-ignorable missingness
    Cole, BF
    Bonetti, M
    Zaslavsky, AM
    Gelber, RD
    STATISTICS IN MEDICINE, 2005, 24 (15) : 2317 - 2334
  • [25] A mixed effects model for the analysis of ordinal longitudinal pain data subject to informative drop-out
    Pulkstenis, E
    Ten Have, TR
    Landis, JR
    STATISTICS IN MEDICINE, 2001, 20 (04) : 601 - 622
  • [26] Latent Gaussian copula models for longitudinal binary data
    Peng, Cheng
    Yang, Yihe
    Zhou, Jie
    Pan, Jianxin
    JOURNAL OF MULTIVARIATE ANALYSIS, 2022, 189
  • [27] Bootstrap calibration of TRANSMIT for informative missingness of parental genotype data
    Andrew S Allen
    Julianne S Collins
    Paul J Rathouz
    Craig L Selander
    Glen A Satten
    BMC Genetics, 4
  • [28] Simultaneous variable selection and parameters estimation for longitudinal data subject to missingness and covariates measurement error
    Basha, Heba A.
    Abdrabou, Abdelnaser S.
    Gad, Ahmed M.
    Ibrahim, Wafaa I. M.
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [29] Bayesian approach to analysing longitudinal bivariate binary data with informative dropout
    Chan, Jennifer S. K.
    Wan, Wai Y.
    COMPUTATIONAL STATISTICS, 2011, 26 (01) : 121 - 144
  • [30] LATENT MARKOV MODEL FOR LONGITUDINAL BINARY DATA: AN APPLICATION TO THE PERFORMANCE EVALUATION OF NURSING HOMES
    Bartolucci, Francesco
    Lupparelli, Monia
    Montanari, Giorgio E.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (02): : 611 - 636