Natural Language Querying of Complex Business Intelligence Queries

被引:13
|
作者
Sen, Jaydeep [1 ]
Ozcan, Fatma [1 ]
Quamar, Abdul [1 ]
Stager, Greg [2 ]
Mittal, Ashish [1 ]
Jammi, Manasa [1 ]
Lei, Chuan [1 ]
Saha, Diptikalyan [1 ]
Sankaranarayanan, Karthik [1 ]
机构
[1] IBM Res AI, Yorktown Hts, NY 10598 USA
[2] IBM Canada, Markham, ON, Canada
关键词
D O I
10.1145/3299869.3320248
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Natural Language Interface to Database (NLIDB) eliminates the need for an end user to use complex query languages like SQL by translating the input natural language statements to SQL automatically. Although NLIDB systems have seen rapid growth of interest recently, the current state-of-the-art systems can at best handle point queries to retrieve certain column values satisfying some filters, or aggregation queries involving basic SQL aggregation functions. In this demo, we showcase our NLIDB system with extended capabilities for business applications that require complex nested SQL queries without prior training or feedback from human in-the-loop. In particular, our system uses novel algorithms that combine linguistic analysis with deep domain reasoning for solving core challenges in handling nested queries. To demonstrate the capabilities, we propose a new benchmark dataset containing realistic business intelligence queries, conforming to an ontology derived from FIBO and FRO financial ontologies. In this demo, we will showcase a wide range of complex business intelligence queries against our benchmark dataset, with increasing level of complexity. The users will be able to examine the SQL queries generated, and also will be provided with an English description of the interpretation.
引用
收藏
页码:1997 / 2000
页数:4
相关论文
共 50 条
  • [41] CIG AN EXPERIMENT IN NATURAL LANGUAGE QUERYING OF A DATA BANK
    ADRIEN, F
    [J]. AUTOMATISME, 1972, 17 (6-7): : 223 - &
  • [42] Tooling Framework for Instantiating Natural Language Querying System
    Jammi, Manasa
    Sen, Jaydeep
    Mittal, Ashish
    Verma, Sagar
    Pahuja, Vardaan
    Ananthanarayanan, Rema
    Lohia, Pranay
    Karanam, Hima
    Saha, Diptikalyan
    Sankaranarayanan, Karthik
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2018, 11 (12): : 2014 - 2017
  • [43] Managing dialog and access control in natural language querying
    Quintano, L
    Rodrigues, I
    [J]. COMPUTATIONAL PROCESSING OF THE PORTUGUESE LANAGUAGE, PROCEEDINGS, 2003, 2721 : 206 - 209
  • [44] Restricted natural language based querying of clinical databases
    Safari, Leila
    Patrick, Jon D.
    [J]. JOURNAL OF BIOMEDICAL INFORMATICS, 2014, 52 : 338 - 353
  • [45] Bootstrapping Natural Language Querying on Process Automation Data
    Han, Xue
    Hu, Lianxue
    Sen, Jaydeep
    Dang, Yabin
    Gao, Buyu
    Isahagian, Vatche
    Lei, Chuan
    Efthymiou, Vasilis
    Ozcan, Fatma
    Quamar, Abdul
    Huang, Ziming
    Muthusamy, Vinod
    [J]. 2020 IEEE 13TH INTERNATIONAL CONFERENCE ON SERVICES COMPUTING (SCC 2020), 2020, : 170 - 177
  • [46] A Natural Language Interface for Querying General and Individual Knowledge
    Amsterdamer, Yael
    Kukliansky, Anna
    Milo, Tova
    [J]. PROCEEDINGS OF THE VLDB ENDOWMENT, 2015, 8 (12): : 1430 - 1441
  • [47] INVOCA: Querying the Linked Open Data in Natural Language
    Lupiani, Eduardo
    Navarro, Victoriano
    Ruiz-Martinez, Juana M.
    Valencia-Garcia, Rafael
    Vivancos-Vicente, Pedro J.
    Castejon-Garrido, Juan S.
    [J]. PROCESAMIENTO DEL LENGUAJE NATURAL, 2010, (45): : 323 - 324
  • [48] Semantic Querying of News Articles With Natural Language Questions
    Tuan-Dung Cao
    Quang-Minh Nguyen
    [J]. JOURNAL OF INFORMATION TECHNOLOGY RESEARCH, 2021, 14 (03) : 38 - 57
  • [49] NLINQ: A natural language interface for querying network performance
    Saha, Barun Kumar
    Gordon, Paul
    Gillbrand, Tore
    [J]. APPLIED INTELLIGENCE, 2023, 53 (23) : 28848 - 28864
  • [50] NLINQ: A natural language interface for querying network performance
    Barun Kumar Saha
    Paul Gordon
    Tore Gillbrand
    [J]. Applied Intelligence, 2023, 53 : 28848 - 28864