Cryptocurrency Trading Agent Using Deep Reinforcement Learning

被引:3
|
作者
Suliman, Uwais [1 ]
van Zyl, Terence L. [2 ]
Paskaramoorthy, Andrew [3 ]
机构
[1] Univ Witwatersrand, Comp Sci & Appl Maths, Johannesburg, South Africa
[2] Univ Johannesburg, Inst Intelligent Syst, Johannesburg, South Africa
[3] Univ Cape Town, Dept Stat Sci, Johannesburg, South Africa
关键词
Deep Reinforcement Learning; Neural Networks; Machine Learning; Cryptocurrency; Algorithmic Trading;
D O I
10.1109/ISCMI56532.2022.10068485
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Cryptocurrencies are peer-to-peer digital assets monitored and organised by a blockchain network. Price prediction has been a significant focus point with various machine learning algorithms, especially concerning cryptocurrency. This work addresses the challenge faced by traders of short-term profit maximisation. The study presents a deep reinforcement learning algorithm to trade in cryptocurrency markets, Duelling DQN. The environment has been designed to simulate actual trading behaviour, observing historical price movements and taking action on real-time prices. The proposed algorithm was tested with Bitcoin, Ethereum, and Litecoin. The respective portfolio returns are used as a metric to measure the algorithm's performance against the buy-and-hold benchmark, with the buy-and-hold outperforming the results produced by the Duelling DQN agent.
引用
收藏
页码:6 / 10
页数:5
相关论文
共 50 条
  • [31] Deep Reinforcement Learning based Multi-Agent Collaborated Network for Distributed Stock Trading
    Kim, Jung-Jae
    Cha, Si-Ho
    Cho, Kuk-Hyun
    Ryu, Minwoo
    INTERNATIONAL JOURNAL OF GRID AND DISTRIBUTED COMPUTING, 2018, 11 (02): : 11 - 20
  • [32] A Reliable Energy Trading Strategy in Intelligent Microgrids Using Deep Reinforcement Learning
    Cao, Man
    Yin, Zhiyong
    Wang, Yajun
    Yu, Le
    Shi, Peiran
    Cai, Zhi
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [33] Deep reinforcement learning for financial trading using multi-modal features
    Avramelou, Loukia
    Nousi, Paraskevi
    Passalis, Nikolaos
    Tefas, Anastasios
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 238
  • [34] IMPROVING DEEP REINFORCEMENT LEARNING FOR FINANCIAL TRADING USING NEURAL NETWORK DISTILLATION
    Tsantekidis, Avraam
    Passalis, Nikolaos
    Tefas, Anastasios
    PROCEEDINGS OF THE 2020 IEEE 30TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING (MLSP), 2020,
  • [35] Turbulence-driven Autonomous Stock Trading using Deep Reinforcement Learning
    Jaggi, Ramneet
    Abbas, Muhammad Naveed
    Dwivedi, Rahul
    Manzoor, Jawad
    Asghar, Mamoona Naveed
    2024 IEEE 3RD INTERNATIONAL CONFERENCE ON COMPUTING AND MACHINE INTELLIGENCE, ICMI 2024, 2024,
  • [36] Stock Trading Strategies Based on Deep Reinforcement Learning
    Li, Yawei
    Liu, Peipei
    Wang, Ze
    SCIENTIFIC PROGRAMMING, 2022, 2022
  • [37] Application of Deep Reinforcement Learning on Automated Stock Trading
    Chen, Lin
    Gao, Qiang
    PROCEEDINGS OF 2019 IEEE 10TH INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2019), 2019, : 29 - 33
  • [38] Optimizing Automated Trading Systems with Deep Reinforcement Learning
    Tran, Minh
    Pham-Hi, Duc
    Bui, Marc
    ALGORITHMS, 2023, 16 (01)
  • [39] Deep reinforcement learning with positional context for intraday trading
    Goluza, Sven
    Kovacevic, Tomislav
    Bauman, Tessa
    Kostanjcar, Zvonko
    EVOLVING SYSTEMS, 2024, 15 (05) : 1865 - 1880
  • [40] A Stock Trading Strategy Based on Deep Reinforcement Learning
    Khemlichi, Firdaous
    Chougrad, Hiba
    Khamlichi, Youness Idrissi
    El Boushaki, Abdessamad
    Ben Ali, Safae El Haj
    ADVANCED INTELLIGENT SYSTEMS FOR SUSTAINABLE DEVELOPMENT (AI2SD'2020), VOL 2, 2022, 1418 : 920 - 928