Two-component integrable generalizations of Burgers equations with nondiagonal linearity

被引:3
|
作者
Talati, Daryoush [1 ]
Turhan, Refik [1 ]
机构
[1] Ankara Univ, Dept Engn Phys, TR-06100 Tandogan, Turkey
关键词
STRANGE RECURSION OPERATOR; EVOLUTION-EQUATIONS; SYMMETRY APPROACH; CLASSIFICATION; SYSTEMS;
D O I
10.1063/1.4947110
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Two-component second- and third-order Burgers type systems with nondiagonal constant matrix of leading order terms are classified for higher symmetries. New integrable systems are obtained. Master symmetries of the obtained symmetry integrable systems, and bi-Poisson structures of those that also possess conservation laws, are given. Published by AIP Publishing.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] A new integrable two-component system with cubic nonlinearity
    Song, Junfeng
    Qu, Changzheng
    Qiao, Zhijun
    JOURNAL OF MATHEMATICAL PHYSICS, 2011, 52 (01)
  • [22] Two-Component Super AKNS Equations and Their Finite-Dimensional Integrable Super Hamiltonian System
    Yu, Jing
    Han, Jingwei
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [23] Integrability Analysis of a Two-Component Burgers-Type Hierarchy
    D. Blackmore
    A. K. Prykarpatsky
    E. Özçağ
    K. Soltanov
    Ukrainian Mathematical Journal, 2015, 67 : 167 - 185
  • [24] Integrability Analysis of a Two-Component Burgers-Type Hierarchy
    Blackmore, D.
    Prykarpatsky, A. K.
    Ozcag, E.
    Soltanov, K.
    UKRAINIAN MATHEMATICAL JOURNAL, 2015, 67 (02) : 167 - 185
  • [25] On the Cauchy problem for the new integrable two-component Novikov equation
    Mi, Yongsheng
    Mu, Chunlai
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2020, 199 (03) : 1091 - 1122
  • [26] On various integrable discretizations of a general two-component Volterra system
    Babalic, Corina N.
    Carstea, A. S.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (14)
  • [27] On the Cauchy problem of a new integrable two-component Novikov equation
    Mi, Yongsheng
    Huang, Daiwen
    MONATSHEFTE FUR MATHEMATIK, 2020, 193 (02): : 361 - 381
  • [28] On integrable two-dimensional generalizations of nonlinear Schrodinger type equations
    Mikhailov, AV
    Yamilov, RI
    PHYSICS LETTERS A, 1997, 230 (5-6) : 295 - 300
  • [29] Well-Posedness for a New Two-Component Integrable System
    Qiong LONG
    Chunlai MU
    Pan ZHENG
    Shouming ZHOU
    Journal of Mathematical Research with Applications, 2014, 34 (03) : 349 - 361
  • [30] On the Cauchy problem of a new integrable two-component Novikov equation
    Yongsheng Mi
    Daiwen Huang
    Monatshefte für Mathematik, 2020, 193 : 361 - 381