Parallelization of the quantile function optimization algorithms

被引:0
|
作者
Kibzun, A. I. [1 ]
机构
[1] Tech Univ, Moscow State Aviat Inst, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
2.50.-r; 02.60.Pn;
D O I
10.1134/S0005117907050074
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Consideration was given to optimization of the loss function that is individually convex in the strategy and random vector. The problem was solved using the confidential method which majorizes the estimate of the quantile function. Two methods to determine the desired estimate were discussed. Both allow one to parallelize calculation of the estimate and reduce the problem to the solution of a set of convex programming problems.
引用
收藏
页码:799 / 810
页数:12
相关论文
共 50 条
  • [31] Graph algorithms: parallelization and scalability
    Wenfei Fan
    Kun He
    Qian Li
    Yue Wang
    Science China Information Sciences, 2020, 63
  • [32] On parallelization of static scheduling algorithms
    Wu, MY
    Shu, W
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, 1997, 23 (08) : 517 - 528
  • [33] On parallelization of neural classification algorithms
    Lam, KP
    Furness, A
    SECOND INTERNATIONAL SYMPOSIUM ON PARALLEL ARCHITECTURES, ALGORITHMS, AND NETWORKS (I-SPAN '96), PROCEEDINGS, 1996, : 337 - 340
  • [34] Parallelization method of encryption algorithms
    Bielecki, Wlodzimierz
    Burak, Dariusz
    ADVANCES IN INFORMATION PROCESSING AND PROTECTION, 2007, : 191 - 204
  • [35] Parallelization strategies for rollout algorithms
    Guerriero, F
    Mancini, M
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2005, 31 (02) : 221 - 244
  • [36] Automatic parallelization of net algorithms
    Prihozhy, A
    Merdjani, R
    Iskandar, F
    INTERNATIONAL CONFERENCE ON PARALLEL COMPUTING IN ELECTRICAL ENGINEERING - PARELEC 2000, PROCEEDINGS, 2000, : 24 - 28
  • [37] Graph algorithms: parallelization and scalability
    Fan, Wenfei
    He, Kun
    Li, Qian
    Wang, Yue
    SCIENCE CHINA-INFORMATION SCIENCES, 2020, 63 (10)
  • [38] A method for solving quantile optimization problems with a bilinear loss function
    Vasil'eva, S. N.
    Kan, Yu. S.
    AUTOMATION AND REMOTE CONTROL, 2015, 76 (09) : 1582 - 1597
  • [39] A method for solving quantile optimization problems with a bilinear loss function
    S. N. Vasil’eva
    Yu. S. Kan
    Automation and Remote Control, 2015, 76 : 1582 - 1597
  • [40] Wedge template optimization and parallelization of depth map in intra-frame prediction algorithms
    Xie X.
    Wang Y.
    Shi P.
    Zhu Y.
    Deng J.
    Zhao H.
    High Technology Letters, 2021, 27 (04) : 430 - 439