Synchronous solutions and their stability in nonlocally coupled phase oscillators with propagation delays

被引:12
|
作者
Sethia, Gautam C. [1 ]
Sen, Abhijit [1 ]
Atay, Fatihcan M. [2 ]
机构
[1] Inst Plasma Res, Bhat 382428, Gandhinagar, India
[2] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
来源
PHYSICAL REVIEW E | 2010年 / 81卷 / 05期
关键词
LIMIT-CYCLE OSCILLATORS; NEURAL FIELDS; SYNCHRONIZATION; NETWORKS; SYSTEMS;
D O I
10.1103/PhysRevE.81.056213
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study the existence and stability of synchronous solutions in a continuum field of nonlocally coupled identical phase oscillators with distance-dependent propagation delays. We present a comprehensive stability diagram in the parameter space of the system. From the numerical results, a heuristic synchronization condition is suggested and an analytic relation for the marginal stability curve is obtained. We also provide an expression in the form of a scaling relation that closely follows the marginal stability curve over the complete range of the nonlocality parameter.
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Breathing chimera states in nonlocally coupled type-I excitable phase oscillators
    Li, Yang
    Li, Haihong
    Liang, Jinfeng
    Wang, Xuan
    Dai, Qionglin
    Yang, Junzhong
    PHYSICAL REVIEW E, 2025, 111 (01)
  • [32] Instability of synchronized motion in nonlocally coupled neural oscillators
    Sakaguchi, H
    PHYSICAL REVIEW E, 2006, 73 (03):
  • [33] Chimera state in a network of nonlocally coupled impact oscillators
    Jerzy WOJEWODA
    Karthikeyan RAJAGOPAL
    Viet-Thanh PHAM
    Fatemeh PARASTESH
    Tomasz KAPITANIAK
    Sajad JAFARI
    Journal of Zhejiang University-Science A(Applied Physics & Engineering), 2021, 22 (03) : 235 - 244
  • [34] Chimera state in a network of nonlocally coupled impact oscillators
    Wojewoda, Jerzy
    Rajagopal, Karthikeyan
    Pham, Viet-Thanh
    Parastesh, Fatemeh
    Kapitaniak, Tomasz
    Jafari, Sajad
    JOURNAL OF ZHEJIANG UNIVERSITY-SCIENCE A, 2021, 22 (03): : 235 - 244
  • [35] Noise-induced turbulence in nonlocally coupled oscillators
    Kawamura, Yoji
    Nakao, Hiroya
    Kuramoto, Yoshiki
    PHYSICAL REVIEW E, 2007, 75 (03):
  • [36] Collective Dynamical Behaviors of Nonlocally Coupled Brockett Oscillators
    Ramadoss, Janarthan
    Durairaj, Premraj
    Rajagopal, Karthikeyan
    Akgul, Akif
    Mathematical Problems in Engineering, 2023, 2023
  • [37] Nonuniformly twisted states and traveling chimeras in a system of nonlocally coupled identical phase oscillators
    Smirnov, L. A.
    Bolotov, M., I
    Pikovsky, A.
    JOURNAL OF PHYSICS-COMPLEXITY, 2024, 5 (01):
  • [38] Chimera and modulated drift states in a ring of nonlocally coupled oscillators with heterogeneous phase lags
    Choe, Chol-Ung
    Kim, Ryong-Son
    Ri, Ji-Song
    PHYSICAL REVIEW E, 2017, 96 (03)
  • [39] Chimera States in Populations of Nonlocally Coupled Chemical Oscillators
    Nkomo, Simbarashe
    Tinsley, Mark R.
    Showalter, Kenneth
    PHYSICAL REVIEW LETTERS, 2013, 110 (24)
  • [40] Spiral wave chimeras in nonlocally coupled bicomponent oscillators
    Li, Yang
    Li, Haihong
    Chen, Yirui
    Gao, Shun
    Dai, Qionglin
    Yang, Junzhong
    PHYSICAL REVIEW E, 2023, 108 (06)