Prediction of nickel-base superalloys' rheological behaviour under hot forging conditions using artificial neural networks

被引:28
|
作者
Bariani, PF [1 ]
Bruschi, S [1 ]
Dal Negro, T [1 ]
机构
[1] Univ Padua, DIMEG, I-35131 Padua, Italy
关键词
hot forging; flow stress; neural network;
D O I
10.1016/j.jmatprotec.2004.04.416
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper neural networks are utilised to represent the rheological behaviour of the Nickel-base superalloy Nimonic 80A under deformation conditions approximating thermo-mechanical cycles of industrial hot forging operations. A feed-forward back-propagation neural network has been trained and tested on rheological data, obtained from hot compression experiments, performed under single- and multi-step deformation conditions, both at constant and varying strain rate. The good agreement between experimental and calculated flow curves shows that a properly trained neural network can be successfully employed in representing material response to hot forging cycles. (C) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:395 / 400
页数:6
相关论文
共 50 条
  • [41] Prediction on tribological behaviour of composite PEEK-CF30 using artificial neural networks
    Xu LiuJie
    Davim, J. Paulo
    Cardoso, Rosaria
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 189 (1-3) : 374 - 378
  • [42] Fatigue Crack Growth Prediction in a Nickel-Base Superalloy Under Spectrum Loads Using FRANC3D
    N. Nagarajappa
    Sharanagouda G. Malipatil
    Anuradha N. Majila
    D. Chandru Fernando
    M. Manjuprasad
    C. M. Manjunatha
    Transactions of the Indian National Academy of Engineering, 2022, 7 (2) : 533 - 540
  • [43] Prediction of anoxic sulfide biooxidation under various HRTs using artificial neural networks
    Mahmood, Qaisar
    Zheng, Ping
    Wu, Dong-Lei
    Wang, Xu-Sheng
    Yousaf, Hayat
    Ul-Islam, Ejaz
    Hassan, Muhammad Jaffar
    Jilani, Ghulam
    Azim, Muhammad Rashid
    BIOMEDICAL AND ENVIRONMENTAL SCIENCES, 2007, 20 (05) : 398 - 403
  • [44] Prediction of Anoxic Sulfide Biooxidation Under Various HRTs Using Artificial Neural Networks
    QAISAR MAHMOOD
    HAYAT YOUSAF
    EJAZ UL-ISLAM
    MUHAMMAD JAFFAR HASSAN
    GHULAM JILANI
    MUHAMMAD RASHID AZIM
    Biomedical and Environmental Sciences, 2007, (05) : 398 - 403
  • [45] Prediction of the Response of Masonry Walls under Blast Loading Using Artificial Neural Networks
    Thango, Sipho G.
    Drosopoulos, Georgios A.
    Motsa, Siphesihle M.
    Stavroulakis, Georgios E.
    INFRASTRUCTURES, 2024, 9 (01)
  • [46] Evaluating Concrete Strength Under Various Curing Conditions Using Artificial Neural Networks
    Al-Gburi, Majid
    Almssad, Asaad
    Al-Zuhairi, Osamah Ibrahim
    NORDIC CONCRETE RESEARCH, 2024, 71 (01): : 1 - 23
  • [47] MODELLING DAILY EVAPOTRANSPIRATION USING ARTIFICIAL NEURAL NETWORKS UNDER HYPER ARID CONDITIONS
    Yassin, Mohamed A.
    Alazba, A. A.
    Mattar, Mohamed A.
    PAKISTAN JOURNAL OF AGRICULTURAL SCIENCES, 2016, 53 (03): : 695 - 712
  • [48] Artificial neural network modeling of phase volume fraction of Ti alloy under isothermal and non-isothermal hot forging conditions
    J. H. Kim
    N. S. Reddy
    J. T. Yeom
    C. S. Lee
    N. K. Park
    Journal of Mechanical Science and Technology, 2007, 21 : 1560 - 1565
  • [49] Artificial neural network modeling of phase volume fraction of Ti alloy under isothermal and non-isothermal hot forging conditions
    Kim, J. H.
    Reddy, N. S.
    Yeom, J. T.
    Lee, C. S.
    Park, N. K.
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2007, 21 (10) : 1560 - 1565
  • [50] Prediction of the compressive strength of self-compacting concrete using artificial neural networks based on rheological parameters
    el Asri, Yousef
    Benaicha, Mouhcine
    Zaher, Mounir
    Hafidi Alaoui, Adil
    STRUCTURAL CONCRETE, 2022, 23 (06) : 3864 - 3876