Two Bacterial Small Heat Shock Proteins, IbpA and IbpB, Form a Functional Heterodimer

被引:15
|
作者
Pirog, Artur [1 ]
Cantini, Francesca [2 ,3 ]
Nierzwicki, Lukasz [4 ]
Obuchowski, Igor [1 ]
Tomiczek, Bartlomiej [1 ]
Czub, Jacek [4 ]
Liberek, Krzysztof [1 ]
机构
[1] Univ Gdansk, Intercoll Fac Biotechnol UG MUG, Abrahama 58, PL-80307 Gdansk, Poland
[2] Univ Florence, Magnet Resonance Ctr, Via L Sacconi 6, I-50019 Sesto Fiorentino, Italy
[3] Univ Florence, Dept Chem, Via L Sacconi 6, I-50019 Sesto Fiorentino, Italy
[4] Gdansk Univ Technol, Dept Phys Chem, Narutowicza 11-12, PL-80233 Gdansk, Poland
基金
欧盟地平线“2020”;
关键词
bacterial small heat shock proteins; chaperones; modification of protein aggregation; protein refolding; heterodimer of sHsps; ESCHERICHIA-COLI; QUATERNARY ORGANIZATION; MOLECULAR CHAPERONES; AGGREGATED PROTEINS; DYNAMICS; HSP70; NMR; TEMPERATURE; EXPRESSION; PREDICTION;
D O I
10.1016/j.jmb.2021.167054
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Small heat shock proteins (sHsps) are a conserved class of ATP-independent chaperones which in stress conditions bind to unfolded protein substrates and prevent their irreversible aggregation. Substrates trapped in sHsps-containing aggregates are efficiently refolded into native structures by ATP-dependent Hsp70 and Hsp100 chaperones. Most gamma-proteobacteria possess a single sHsp (IbpA), while in a subset of Enterobacterales, as a consequence of ibpA gene duplication event, a two-protein sHsp (IbpA and IbpB) system has evolved. IbpA and IbpB are functionally divergent. Purified IbpA, but not IbpB, stably interacts with aggregated substrates, yet both sHsps are required to be present at the substrate denaturation step for subsequent efficient Hsp70-Hsp100-dependent substrate refolding. IbpA and IbpB interact with each other, influence each other's expression levels and degradation rates. However, the crucial information on how these two sHsps interact and what is the basic building block required for proper sHsps functioning was missing. Here, based on NMR, mass spectrometry and crosslinking studies, we show that IbpA-IbpB heterodimer is a dominating functional unit of the two sHsp system in Enterobacterales. The principle of heterodimer formation is similar to one described for homodimers of single bacterial sHsps. beta-hairpins formed by strands beta 5 and beta 7 of IbpA or IbpB crystallin domains associate with the other one's beta-sandwich in the heterodimer structure. Relying on crosslinking and molecular dynamics studies, we also propose the orientation of two IbpA-IbpB heterodimers in a higher order tetrameric structure. (C) 2021 The Author(s). Published by Elsevier Ltd.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] The small heat shock proteins and their clients
    H. Nakamoto
    L. Vígh
    Cellular and Molecular Life Sciences, 2007, 64 : 294 - 306
  • [42] Small heat shock proteins and diabetes
    Sudnitsyna M.V.
    Gusev N.B.
    Moscow University Biological Sciences Bulletin, 2015, 70 (2) : 72 - 77
  • [43] Neuropathies and small heat shock proteins
    Tarrade, A
    Fassier, C
    Melki, J
    M S-MEDECINE SCIENCES, 2004, 20 (12): : 1073 - 1075
  • [44] Mechanisms of Small Heat Shock Proteins
    Janowska, Maria K.
    Baughman, Hannah E. R.
    Woods, Christopher N.
    Klevit, Rachel E.
    COLD SPRING HARBOR PERSPECTIVES IN BIOLOGY, 2019, 11 (10):
  • [45] An overview on the small heat shock proteins
    Mahmood, Tariq
    Safdar, Waseem
    Abbasi, Bilal Haider
    Naqvi, S. M. Saqlan
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2010, 9 (07): : 927 - 939
  • [46] An overview on the small heat shock proteins
    Mahmood, Tariq
    Safdar, Waseem
    Abbasi, Bilal Haider
    Naqvi, S. M. Saqlan
    AFRICAN JOURNAL OF BIOTECHNOLOGY, 2009, 8 (25): : 7290 - 7302
  • [47] Methylglyoxal and Small Heat Shock Proteins
    Sudnitsyna, M. V.
    Gusev, N. B.
    BIOCHEMISTRY-MOSCOW, 2017, 82 (07) : 751 - 759
  • [48] The small heat shock proteins and their clients
    Nakamoto, H.
    Vigh, L.
    CELLULAR AND MOLECULAR LIFE SCIENCES, 2007, 64 (03) : 294 - 306
  • [49] Duplicate divergence of two bacterial small heat shock proteins reduces the demand for Hsp70 in refolding of substrates
    Obuchowski, Igor
    Pirog, Artur
    Stolarska, Milena
    Tomiczek, Bartlomiej
    Liberek, Krzysztof
    PLOS GENETICS, 2019, 15 (10):