Dynamic Attention Network for Multi-UAV Reinforcement Learning

被引:0
|
作者
Xu, Dongsheng [1 ]
Wu, Shang [1 ]
机构
[1] Natl Univ Def Technol, Sci & Technol Parallel & Distributed Proc Lab, Coll Comp, Changsha, Hunan, Peoples R China
关键词
MADDPG; Transfer learning; Attention; Reinforcement learning; LEVEL;
D O I
10.1117/12.2626437
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent methods for multi-agent reinforcement learning problems make use of Deep Neural Networks and provide stateof-the-art performance with dedicated neural network architectures and comprehensive training tricks. However, these deep reinforcement learning methods suffer from reproducibility issues, especially in transfer learning. Since the fixed size of the network input, it is difficult for the existing network structure to transfer the strategies learned from a small scale to a large scale. We argue that proper network architecture design is crucial to the cross-scale reinforcement transfer learning. In this paper, we use transfer training with attention network to solve multi-agent combat problems from aerial unmanned aerial vehicle (UAV) combat scenarios, and extend the small-scale learning to large-scale complex scenarios. We combine the attention neural network with the MADDPG algorithm to process the agent observation. It started training from a small-scale multi-UAV combat scenario and gradually increases the number of UAV. The experimental results show that methods for multi-agent UAV combat problems trained by attention transfer learning can achieve the target performance faster and provide better performance than the method without attention transfer learning.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] Multi-UAV simultaneous target assignment and path planning based on deep reinforcement learning in dynamic multiple obstacles environments
    Kong, Xiaoran
    Zhou, Yatong
    Li, Zhe
    Wang, Shaohai
    FRONTIERS IN NEUROROBOTICS, 2024, 17
  • [42] Multi-UAV reconnaissance mission planning via deep reinforcement learning with simulated annealing
    Department of Mechanical Engineering, National University of Singapore, Singapore
    不详
    不详
    不详
    Swarm Evol. Comput., 2025, 93
  • [43] Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method
    Tang, Jie
    Song, Jingru
    Ou, Junhui
    Luo, Jingci
    Zhang, Xiuyin
    Wong, Kai-Kit
    IEEE ACCESS, 2020, 8 : 9124 - 9132
  • [44] Trajectory Design and Resource Allocation for Multi-UAV Networks: Deep Reinforcement Learning Approaches
    Chang, Zheng
    Deng, Hengwei
    You, Li
    Min, Geyong
    Garg, Sahil
    Kaddoum, Georges
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (05): : 2940 - 2951
  • [45] Minimum Throughput Maximization for Multi-UAV Enabled WPCN: A Deep Reinforcement Learning Method
    Tang, Jie
    Song, Jingru
    Ou, Junhui
    Luo, Jingci
    Zhang, Xiuyin
    Wong, Kai-Kit
    IEEE Access, 2020, 8 : 9124 - 9132
  • [46] Multi-UAV Collaborative Dynamic Task Allocation Method Based on ISOM and Attention Mechanism
    Wu, Jiehong
    Zhang, Jingchuan
    Sun, Ya'nan
    Li, Xianwei
    Gao, Lijun
    Han, Guangjie
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2024, 73 (05) : 6225 - 6235
  • [47] Dense Multiagent Reinforcement Learning Aided Multi-UAV Information Coverage for Vehicular Networks
    Fu, Hang
    Wang, Jingjing
    Chen, Jianrui
    Ren, Pengfei
    Zhang, Zheng
    Zhao, Guodong
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (12): : 21274 - 21286
  • [48] Scalable and Cooperative Deep Reinforcement Learning Approaches for Multi-UAV Systems: A Systematic Review
    Frattolillo, Francesco
    Brunori, Damiano
    Iocchi, Luca
    DRONES, 2023, 7 (04)
  • [49] Collaborative Decision-Making Method for Multi-UAV Based on Multiagent Reinforcement Learning
    Li, Shaowei
    Jia, Yuhong
    Yang, Fan
    Qin, Qingyang
    Gao, Hui
    Zhou, Yaoming
    IEEE ACCESS, 2022, 10 : 91385 - 91396
  • [50] Enhancing multi-UAV air combat decision making via hierarchical reinforcement learning
    Huan Wang
    Jintao Wang
    Scientific Reports, 14