Fast algorithm for finding the eigenvalue distribution of very large matrices

被引:161
|
作者
Hams, A
De Raedt, H
机构
[1] Univ Groningen, Inst Theoret Phys, NL-9747 AG Groningen, Netherlands
[2] Univ Groningen, Ctr Mat Sci, NL-9747 AG Groningen, Netherlands
关键词
D O I
10.1103/PhysRevE.62.4365
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A theoretical analysis is given of the equation of motion method, due to Alben et al. [Phys. Rev. B 12, 4090 (1975)], to compute the eigenvalue distribution (density of states) of very large matrices. The salient feature of this method is that for matrices of the kind encountered in quantum physics the memory and CPU requirements of this method scale linearly with the dimension of the matrix. We derive a rigorous estimate of the statistical error, supporting earlier observations that the computational efficiency of this approach increases with the matrix size. We use this method and an imaginary-time version of it to compute the energy and specific heat of three different, exactly solvable, spin-1/2 models, and compare with the exact results to study the dependence of the statistical errors on sample and matrix size.
引用
收藏
页码:4365 / 4377
页数:13
相关论文
共 50 条
  • [21] A large deviation theorem for the empirical eigenvalue distribution of random unitary matrices
    Hiai, F
    Petz, D
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2000, 36 (01): : 71 - 85
  • [22] A fast and simple algorithm for finding the modes of a multinomial distribution
    White, W. T. J.
    Hendy, M. D.
    STATISTICS & PROBABILITY LETTERS, 2010, 80 (01) : 63 - 68
  • [23] Fast conversion algorithm for very large Boolean functions
    Wang, L
    Almani, AEA
    ELECTRONICS LETTERS, 2000, 36 (16) : 1370 - 1371
  • [24] A NEW ALGORITHM FOR THE EIGENVALUE PROBLEM OF MATRICES
    CAI, DY
    HONG, J
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 1989, 7 (03) : 313 - 320
  • [25] On Eigenvalue Distribution of Random Matrices of Ihara Zeta Function of Large Random Graphs
    Khorunzhiy, O.
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2017, 13 (03) : 268 - 282
  • [26] ON EIGENVALUE DISTRIBUTIONS OF LARGE AUTOCOVARIANCE MATRICES
    Yao, Jianfeng
    Yuan, Wangjun
    ANNALS OF APPLIED PROBABILITY, 2022, 32 (05): : 3450 - 3491
  • [27] The smallest eigenvalue of large Hankel matrices
    Zhu, Mengkun
    Chen, Yang
    Emmart, Niall
    Weems, Charles
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 334 : 375 - 387
  • [28] GPU Acceleration of Finding Maximum Eigenvalue of Positive Matrices
    Tian, Ning
    Guo, Longjiang
    Ai, Chunyu
    Ren, Meirui
    Li, Jinbao
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2014, PT II, 2014, 8631 : 231 - 244
  • [30] EIGENVALUE DISTRIBUTION OF RANDOM OPERATORS AND MATRICES
    PASTUR, L
    ASTERISQUE, 1992, (206) : 445 - 461