Stability of abstract dynamic equations on time scales by Lyapunov's second method

被引:9
|
作者
Hamza, Alaa [1 ,2 ]
Oraby, Karima [3 ]
机构
[1] Univ Jeddah, Fac Sci, Dept Math, Jeddah, Saudi Arabia
[2] Cairo Univ, Fac Sci, Dept Math, Cairo, Egypt
[3] Suez Univ, Fac Sci, Dept Math, Suez, Egypt
关键词
Lyapunov stability theory; dynamic equations; time scales; SYSTEMS;
D O I
10.3906/mat-1703-65
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we use the Lyapunov's second method to obtain new sufficient conditions for many types of stability like exponential stability, uniform exponential stability, h-stability, and uniform h-stability of the nonlinear dynamic equation x(Delta)(t) = A(t)x(t) + f (t, x), t is an element of T-tau(+) := [tau, infinity)(T), on a time scale T, where A is an element of C-rd(T, L(X)) and f : T x X -> X is rd-continuous in the first argument with f(t, 0) = 0. Here X is a Banach space. We also establish sufficient conditions for the nonhomogeneous particular dynamic equation x(Delta)(t) = A(t)x(t) + f (t), t is an element of T-tau(+), to be uniformly exponentially stable or uniformly h-stable, where f is an element of C-rd(T, X), the space of rd-continuous functions from T to X. We construct a Lyapunov function and we make use of this function to obtain our stability results. Finally, we give illustrative examples to show the applicability of the theoretical results.
引用
收藏
页码:841 / 861
页数:21
相关论文
共 50 条
  • [11] Matrix Lyapunov functions method for sets of dynamic equations on time scales
    Martynyuk, A. A.
    Stamova, I. M.
    Martynyuk-Chernienko, Yu A.
    NONLINEAR ANALYSIS-HYBRID SYSTEMS, 2019, 34 : 166 - 178
  • [12] Hyers-Ulam-Rassias stability of abstract second-order linear dynamic equations on time scales
    Alghamdi, Maryam
    Aljehani, Alaa
    Hamza, Alaa E.
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 24 (02): : 110 - 118
  • [13] h-stability for nonlinear abstract dynamic equations on time scales and applications
    Neggal, Bilel
    Boukerrioua, Khaled
    Kilani, Brahim
    Meziri, Imen
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2020, 69 (03) : 1017 - 1031
  • [14] h-stability for nonlinear abstract dynamic equations on time scales and applications
    Bilel Neggal
    Khaled Boukerrioua
    Brahim Kilani
    Imen Meziri
    Rendiconti del Circolo Matematico di Palermo Series 2, 2020, 69 : 1017 - 1031
  • [15] Semigroups of operators and abstract dynamic equations on time scales
    Hamza, Alaa E.
    Oraby, Karima M.
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 270 : 334 - 348
  • [16] OPIAL AND LYAPUNOV INEQUALITIES ON TIME SCALES AND THEIR APPLICATIONS TO DYNAMIC EQUATIONS
    Nguyen Du Vi Nhan
    Tran Dinh Phung
    Dinh Thanh Duc
    Vu Kim Tuan
    KODAI MATHEMATICAL JOURNAL, 2017, 40 (02) : 254 - 277
  • [17] Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales
    Ravi P. Agarwal
    Erbil Çetin
    Abdullah Özbekler
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2017, 111 : 231 - 246
  • [18] Lyapunov type inequalities for second-order forced dynamic equations with mixed nonlinearities on time scales
    Agarwal, Ravi P.
    Cetin, Erbil
    Ozbekler, Abdullah
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2017, 111 (01) : 231 - 246
  • [19] Waewski's method for systems of dynamic equations on time scales
    Diblik, Josef
    Ruzickova, Miroslava
    Smarda, Zdenek
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E1124 - E1131
  • [20] Exponential stability of dynamic equations on time scales
    Peterson, Allan C.
    Raffoul, Youssef N.
    ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) : 133 - 144