Gravitational redshift in the void-galaxy cross-correlation function in redshift space

被引:2
|
作者
Nan, Yue [1 ]
Yamamoto, Kazuhiro [1 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Phys Sci, Kagamiyama 1-3-1, Higashihiroshima 7398526, Japan
基金
日本学术振兴会;
关键词
RELATIVISTIC DISTORTIONS; GENERAL-RELATIVITY; TESTING GRAVITY; COSMIC VOIDS; CLUSTERS; SIMULATIONS; GROWTH;
D O I
10.1103/PhysRevD.98.043527
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We construct an analytic model for the void-galaxy cross-correlation function that enables theoretical predictions of the dipole signal produced dominantly by the gravitational redshift within voids for the first time. By extending a theoretical formulation for the redshift-space distortion of galaxies to include the second order terms of the galaxy peculiar velocity nu and the gravitational potential, we formulate the void-galaxy cross-correlation function multipoles in the redshift space, the monopole zeta((s))(0), dipole zeta((s))(1), and quadrupole zeta((s))(2). We find that the dipole zeta((s))(1) is dominated by the gravitational redshift, which provides a unique opportunity to detect the gravitational potential of voids. Thus, for the dipole zeta((s))(1) (s), the gravitational redshift is crucial. Although the higher order effect is almost negligible on tshe monopole zeta((s))(0), it has an influence on the quadrupole zeta((s))(2) . The effects from the random velocity of galaxies and the definition of the void center on the dipole signal are also discussed. Our model offers a new theoretical probe for the detection of gravitational redshift with voids and further tests on cosmology and gravity.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Gravitational lensing effects on the baryonic acoustic oscillation signature in the redshift-space correlation function
    Yoo, Jaiyul
    Miralda-Escude, Jordi
    PHYSICAL REVIEW D, 2010, 82 (04):
  • [32] Correlation function in deep redshift space as a cosmological probe
    Matsubara, T
    ASTROPHYSICAL JOURNAL, 2004, 615 (02): : 573 - 585
  • [33] Redshift-space correlation functions in large galaxy cluster surveys
    Valageas, P.
    Clerc, N.
    ASTRONOMY & ASTROPHYSICS, 2012, 547
  • [34] Gravitational redshift and asymmetric redshift-space distortions for stacked clusters
    Cai, Yan-Chuan
    Kaiser, Nick
    Cole, Shaun
    Frenk, Carlos
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 468 (02) : 1981 - 1993
  • [35] The gravitational lensing in redshift-space correlation functions of galaxies and quasars
    Matsubara, T
    ASTROPHYSICAL JOURNAL, 2000, 537 (02): : L77 - L80
  • [36] The Muenster Redshift Project .2. The redshift space galaxy power spectrum
    Schuecker, P
    Ott, HA
    Seitter, WC
    ASTROPHYSICAL JOURNAL, 1996, 472 (02): : 485 - 493
  • [37] The ESO Slice Project (ESP) galaxy redshift survey VII. The redshift and real-space correlation functions
    Guzzo, L
    Bartlett, JG
    Cappi, A
    Maurogordato, S
    Zucca, E
    Zamorani, G
    Balkowski, C
    Blanchard, A
    Cayatte, V
    Chincarini, G
    Collins, CA
    Maccagni, D
    MacGillivray, H
    Merighi, R
    Mignoli, M
    Proust, D
    Ramella, M
    Scaramella, R
    Stirpe, GM
    Vettolani, G
    ASTRONOMY & ASTROPHYSICS, 2000, 355 (01) : 1 - 16
  • [38] Bayesian redshift-space distortions correction from galaxy redshift surveys
    Kitaura, Francisco-Shu
    Ata, Metin
    Angulo, Raul E.
    Chuang, Chia-Hsun
    Rodriguez-Torres, Sergio
    Hernandez Monteagudo, Carlos
    Prada, Francisco
    Yepes, Gustavo
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2016, 457 (01) : L113 - L117
  • [39] The galaxy-absorber cross-correlation function
    Lanzetta, KM
    Webb, JK
    Barcons, X
    YOUNG UNIVERSE: GALAXY FORMATION AND EVOLUTION AT INTERMEDIATE AND HIGH REDSHIFT, 1998, 146 : 175 - 181
  • [40] The real space and redshift space correlation functions at redshift z=1/3
    Shepherd, CW
    Carlberg, RG
    Yee, HKC
    Ellingson, E
    ASTROPHYSICAL JOURNAL, 1997, 479 (01): : 82 - 89