Simultaneous perturbation stochastic approximation based neural networks for online learning

被引:0
|
作者
Choy, MC [1 ]
Srinivasan, D [1 ]
Cheu, RL [1 ]
机构
[1] Natl Univ Singapore, Dept Elect & Comp Engn, Singapore 117576, Singapore
关键词
simultaneous perturbation stochastic approximation; online learning; multi-agents; traffic signal control;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new application of simultaneous perturbation stochastic approximation (SPSA) for online learning and weight updates in multiple neural networks (SPSA-NN). A multi-agent system is implemented for dynamic control of traffic signals in a complex traffic network with numerous intersections. Neural networks are used to approximate the optimal traffic signal control strategies for each agent and the parameters of these neural networks are updated online using an enhanced version of SPSA. Many simulation runs have been carried out to evaluate the performance of the SPSA-NN against an existing traffic signal control technique. Results show that the SPSA-NN based multi-agent system manages to outperform the existing technique. The mean delay of all vehicles has been reduced by 44% compared to the existing technique.
引用
下载
收藏
页码:1038 / 1044
页数:7
相关论文
共 50 条
  • [31] Convergence of simultaneous perturbation stochastic approximation for nondifferentiable optimization
    He, Y
    Fu, MC
    Marcus, SI
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2003, 48 (08) : 1459 - 1463
  • [32] Performance of Simultaneous Perturbation Stochastic Approximation for Feature Selection
    Algin, Ramazan
    Alkaya, Ali Fuat
    Agaoglu, Mustafa
    INTELLIGENT AND FUZZY SYSTEMS: DIGITAL ACCELERATION AND THE NEW NORMAL, INFUS 2022, VOL 2, 2022, 505 : 348 - 354
  • [33] Global random optimization by simultaneous perturbation stochastic approximation
    Maryak, John L.
    Chin, Daniel C.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2008, 53 (03) : 780 - 783
  • [34] Global random optimization by simultaneous perturbation stochastic approximation
    Maryak, JL
    Chin, DC
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 910 - 916
  • [35] Global random optimization by simultaneous perturbation stochastic approximation
    Maryak, JL
    Chin, DC
    WSC'01: PROCEEDINGS OF THE 2001 WINTER SIMULATION CONFERENCE, VOLS 1 AND 2, 2001, : 307 - 312
  • [36] Global random optimization by Simultaneous Perturbation Stochastic Approximation
    Maryak, JL
    Chin, DC
    JOHNS HOPKINS APL TECHNICAL DIGEST, 2004, 25 (02): : 91 - 100
  • [37] System identification via simultaneous perturbation stochastic approximation
    Hirokami, T
    Maeda, Y
    SICE 2002: PROCEEDINGS OF THE 41ST SICE ANNUAL CONFERENCE, VOLS 1-5, 2002, : 1231 - 1232
  • [38] Simultaneous Perturbation Stochastic Approximation of the Quantum Fisher Information
    Gacon, Julien
    Zoufal, Christa
    Carleo, Giuseppe
    Woerner, Stefan
    QUANTUM, 2021, 5
  • [39] Simultaneous Perturbation Stochastic Approximation for Automatic Speech Recognition
    Stein, Daniel
    Schwenninger, Jochen
    Stadtschnitzer, Michael
    14TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2013), VOLS 1-5, 2013, : 622 - 626
  • [40] Constrained optimization via stochastic approximation with a simultaneous perturbation gradient approximation
    Sadegh, P
    AUTOMATICA, 1997, 33 (05) : 889 - 892