Estimation of state variables in semiautogenous mills by means of a neural moving horizon state estimator

被引:0
|
作者
Carvajal, Karina [1 ]
Acuna, Gonzalo [2 ]
机构
[1] Univ Atacama, Fac Ingn, Copayapu 485, Copiapo, Chile
[2] Univ Santiago Chile, Fac Ingn, Santiago, Chile
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A method of moving horizon state estimation (MHSE) including a recurrent neural network as the dynamic model is used as an estimator of the filling level of the mill for a semiautogenous ore grinding process. The results are compared to those of a simple neural network acting as an estimator. They show the advantages of the Neural-MHSE, especially concerning robustness under large perturbations of the state variables (index of agreement > 0.9), which would favor its application to industrial scale processes.
引用
收藏
页码:1255 / +
页数:3
相关论文
共 50 条
  • [31] Efficient moving horizon state and parameter estimation for SMB processes
    Kuepper, Achim
    Diehl, Moritz
    Schloeder, Johannes P.
    Bock, Hans Georg
    Engell, Sebastian
    JOURNAL OF PROCESS CONTROL, 2009, 19 (05) : 785 - 802
  • [32] Moving horizon state estimation for nonlinear systems with bounded uncertainties
    Liu, Jinfeng
    CHEMICAL ENGINEERING SCIENCE, 2013, 93 : 376 - 386
  • [33] A parametric programming approach to moving-horizon state estimation
    Darby, Mark L.
    Nikolaou, Michael
    AUTOMATICA, 2007, 43 (05) : 885 - 891
  • [34] Nonlinear moving horizon state estimation of an activated sludge model
    Arnold, E
    Dietze, S
    LARGE SCALE SYSTEMS: THEORY AND APPLICATIONS 2001 (LSS'01), 2001, : 545 - 550
  • [35] Real-time Battery State of Charge and parameters estimation through Multi-Rate Moving Horizon Estimator
    Desai, Tushar
    Oliva, Federico
    Ferrari, Riccardo M. G.
    Carnevale, Daniele
    IFAC PAPERSONLINE, 2023, 56 (02): : 6124 - 6129
  • [36] Exploiting input sparsity for joint state/input moving horizon estimation
    Kirchner, M.
    Croes, J.
    Cosco, F.
    Desmet, W.
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2018, 101 : 237 - 253
  • [37] Constrained state estimation for stochastic jump systems: moving horizon approach
    Sun, Qing
    Lim, Cheng-Chew
    Liu, Fei
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2017, 48 (05) : 1009 - 1021
  • [38] Distributed moving horizon state estimation for nonlinear systems with bounded uncertainties
    Zhang, Jing
    Liu, Jinfeng
    JOURNAL OF PROCESS CONTROL, 2013, 23 (09) : 1281 - 1295
  • [39] Nonlinear moving horizon state estimation for a hovercraft with Continuation/GMRES method
    Soneda, Y
    Ohtsuka, T
    PROCEEDINGS OF THE 2002 IEEE INTERNATIONAL CONFERENCE ON CONTROL APPLICATIONS, VOLS 1 & 2, 2002, : 1088 - 1093
  • [40] Robust state estimation for power systems via moving horizon strategy
    Chen, Tengpeng
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2017, 10 : 46 - 54