Spectral Complexity of Hyperspectral Images: A New Approach for Mangrove Classification

被引:18
|
作者
Osei Darko, Patrick [1 ]
Kalacska, Margaret [1 ]
Arroyo-Mora, J. Pablo [2 ]
Fagan, Matthew E. [3 ]
机构
[1] McGill Univ, Dept Geog, Appl Remote Sensing Lab, Montreal, PQ H3A 0B9, Canada
[2] Natl Res Council Canada, Flight Res Lab, Ottawa, ON K1A 0R6, Canada
[3] Univ Maryland, Dept Geog & Environm Syst, Baltimore, MD 21250 USA
基金
加拿大自然科学与工程研究理事会;
关键词
aspatial heterogeneity; spatial heterogeneity; species discrimination; airborne; mean information gain; marginal entropy; CASI; SASI; STRUCTURAL COMPLEXITY; DIGITAL IMAGES; OSA PENINSULA; FOREST; DISCRIMINATION; CONSERVATION; CHLOROPHYLL; VARIABILITY; DYNAMICS; SCALE;
D O I
10.3390/rs13132604
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hyperspectral remote sensing across multiple spatio-temporal scales allows for mapping and monitoring mangrove habitats to support urgent conservation efforts. The use of hyperspectral imagery for assessing mangroves is less common than for terrestrial forest ecosystems. In this study, two well-known measures in statistical physics, Mean Information Gain (MIG) and Marginal Entropy (ME), have been adapted to high spatial resolution (2.5 m) full range (Visible-Shortwave-Infrared) airborne hyperspectral imagery. These two spectral complexity metrics describe the spatial heterogeneity and the aspatial heterogeneity of the reflectance. In this study, we compare MIG and ME with surface reflectance for mapping mangrove extent and species composition in the Sierpe mangroves in Costa Rica. The highest accuracy for separating mangroves from forest was achieved with visible-near infrared (VNIR) reflectance (98.8% overall accuracy), following by shortwave infrared (SWIR) MIG and ME (98%). Our results also show that MIG and ME can discriminate dominant mangrove species with higher accuracy than surface reflectance alone (e.g., MIG-VNIR = 93.6% vs. VNIR Reflectance = 89.7%).
引用
收藏
页数:28
相关论文
共 50 条
  • [1] A New Methodology for Spectral-Spatial Classification of Hyperspectral Images
    Miao, Zelang
    Shi, Wenzhong
    JOURNAL OF SENSORS, 2016, 2016
  • [2] A Hybrid Approach for Supervised Spectral Band Selection in Hyperspectral Images Classification
    Medjahed, Seyyid Ahmed
    Ouali, Mohammed
    COMPUTACION Y SISTEMAS, 2020, 24 (01): : 213 - 219
  • [3] AN ENSEMBLE ACTIVE LEARNING APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Zhang, Zhou
    Crawford, Melba M.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 4963 - 4966
  • [4] Application of Spectral Unmixing Algorithm on Hyperspectral Data for Mangrove Species Classification
    Chakravortty, Somdatta
    Shah, Ekta
    Chowdhury, Arpita Saha
    APPLIED ALGORITHMS, 2014, 8321 : 223 - 236
  • [5] Minimum Spanning Forest Based Approach for Spatial-Spectral Hyperspectral Images Classification
    Poorahangaryan, F.
    Ghassemian, H.
    2016 EIGHTH INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE TECHNOLOGY (IKT), 2016, : 116 - 121
  • [6] Spatial-spectral method for classification of hyperspectral images
    Bian, Xiaoyong
    Zhang, Tianxu
    Yan, Luxin
    Zhang, Xiaolong
    Fang, Houzhang
    Liu, Hai
    OPTICS LETTERS, 2013, 38 (06) : 815 - 817
  • [7] A Method for Hyperspectral Images Classification using Spectral Correlation
    Jing, Luo
    Fei, Hu
    Li Yun-lei
    Yue, Liu
    2018 37TH CHINESE CONTROL CONFERENCE (CCC), 2018, : 9067 - 9072
  • [8] Hyperspectral Images Classification by Spectral-Spatial Processing
    Imani, Maryam
    Ghassemian, Hassan
    2016 8TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2016, : 456 - 461
  • [9] A STOCHASTIC MINIMUM SPANNING FOREST APPROACH FOR SPECTRAL-SPATIAL CLASSIFICATION OF HYPERSPECTRAL IMAGES
    Bernard, K.
    Tarabalka, Y.
    Angulo, J.
    Chanussot, J.
    Benediktsson, J. A.
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011, : 1265 - 1268
  • [10] CLASSIFICATION OF HYPERSPECTRAL IMAGES USING SPECTRAL SPATIAL METHOD
    Rasikapriya, R.
    Thilagavathi, K.
    Vasuki, A.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,