Subshifts of quasi-finite type

被引:30
|
作者
Buzzi, J [1 ]
机构
[1] CNRS, Ctr Math, UMR 7640, F-91128 Palaiseau, France
[2] Ecole Polytech, F-91128 Palaiseau, France
关键词
D O I
10.1007/s00222-004-0392-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:369 / 406
页数:38
相关论文
共 50 条
  • [31] ON EMBEDDINGS OF SUBSHIFTS OF FINITE-TYPE
    KOMURO, M
    LECTURE NOTES IN MATHEMATICS, 1983, 1021 : 299 - 301
  • [32] SUBSHIFTS OF FINITE TYPE AND SOFIC SYSTEMS
    WEISS, B
    MONATSHEFTE FUR MATHEMATIK, 1973, 77 (05): : 462 - 474
  • [33] A quasi-finite basis for multi-loop Feynman integrals
    von Manteuffel, Andreas
    Panzer, Erik
    Schabinger, Robert M.
    JOURNAL OF HIGH ENERGY PHYSICS, 2015, (02): : 1 - 21
  • [34] A quasi-finite basis for multi-loop Feynman integrals
    Andreas von Manteuffel
    Erik Panzer
    Robert M. Schabinger
    Journal of High Energy Physics, 2015
  • [35] Simulation of Effective Subshifts by Two-dimensional Subshifts of Finite Type
    Aubrun, Nathalie
    Sablik, Mathieu
    ACTA APPLICANDAE MATHEMATICAE, 2013, 126 (01) : 35 - 63
  • [36] Constructions with Countable Subshifts of Finite Type
    Salo, Ville
    Torma, Ilkka
    FUNDAMENTA INFORMATICAE, 2013, 126 (2-3) : 263 - 300
  • [37] ENDOMORPHISMS OF IRREDUCIBLE SUBSHIFTS OF FINITE TYPE
    COVEN, EM
    PAUL, ME
    MATHEMATICAL SYSTEMS THEORY, 1975, 8 (02): : 167 - 175
  • [38] Quasi-finite highest weight modules over W∞N
    Boyallian, Carina
    Meinardi, Vanesa
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2011, 44 (23)
  • [39] Simulation of Effective Subshifts by Two-dimensional Subshifts of Finite Type
    Nathalie Aubrun
    Mathieu Sablik
    Acta Applicandae Mathematicae, 2013, 126 : 35 - 63
  • [40] Pushout of quasi-finite and flat group schemes over a Dedekind ring
    Antei, Marco
    JOURNAL OF ALGEBRA, 2012, 371 : 314 - 328